Abstract

At the Altitude Test Facility (ATF) of the University of Stuttgart, a linear compressor cascade test rig serves the investigation of ice crystal icing (ICI) under engine realistic conditions. A numerical model of the first stage of National Aeronautics and Space Administration (NASA) Stage 67 is validated with experimental data taken from the literature and used to investigate the respective ice crystal icing conditions for prospective cascade experiments. Eleven operating points simulating climb conditions with constant non-dimensional power setting through ascending parcels of moist air are selected for analysis. Only the melting-dominated regime is considered. The three-dimensional flow field is obtained using a Reynolds-averaged Navier–Stokes (RANS) approach in combination with a Spalart–Allmaras one-equation turbulence model. The droplet and ice crystal trajectories are calculated based on an Eulerian framework. The computation of the surface energy balance is adapted from the Messinger model taking into account unsteady phenomena. Four of 11 selected operating points indicate the onset of substantial ice accretion. A static wet-bulb temperature of freezing constitutes in general the lower icing limit for rig experiments. The upper icing limit depends on the ice water content impinging and sticking to the target surface.

References

1.
Mason
,
J. G.
,
Strapp
,
W. J.
, and
Chow
,
P.
,
2006
, “
The Ice Particle Threat to Engines in Flight
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, AIAA Paper No. 2006-206.
2.
Mason
,
J. G.
,
Chow
,
P.
, and
Fuleki
,
D. M.
,
2010
, “
Understanding Ice Crystal Accretion and Shedding Phenomenon in Jet Engines Using a Rig Test
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, ASME Paper No. GT2010-22550.
3.
Struk
,
P.
,
Currie
,
T.
,
Wright
,
W. B.
,
Knezevici
,
D. C.
,
Fuleki
,
D.
,
Broeren
,
A.
,
Vargas
,
M.
, and
Tsao
,
J.-C.
,
2011
, “
Fundamental Ice Crystal Accretion Physics Studies
,” SAE Technical Paper 2011-38-0018.
4.
Knezevici
,
D.
,
Fuleki
,
D.
,
Currie
,
T.
, and
MacLeod
,
J. D.
,
2012
, “
Particle Size Effects on Ice Crystal Accretion
,”
4th AIAA Atmospheric and Space Environments Conference
,
New Orleans, LA
,
June 25–28
, AIAA Paper No. 2012-3039.
5.
Currie
,
T. C.
,
Fuleki
,
D.
,
Knezevici
,
D. C.
, and
MacLeod
,
J. D.
,
2013
, “
Altitude Scaling of Ice Crystal Accretion
,”
5th AIAA Atmospheric and Space Environments Conference
,
San Diego, CA
,
June 24–27
, AIAA Paper No. 2013-2677.
6.
Currie
,
T. C.
,
Fuleki
,
D.
, and
Mahallati
,
A.
,
2014
, “
Experimental Studies of Mixed-Phase Sticking Efficiency for Ice Crystal Accretion in Jet Engines
,”
6th AIAA Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 16–20
, AIAA Paper No. 2014-3049.
7.
Flegel
,
A. B.
,
2017
, “
Ice Crystal Icing Research at NASA Glenn Research Center
,”
9th AIAA Atmospheric and Space Environments Conference
,
Denver, CO
,
June 5–9
, AIAA Paper No. 2017-4085.
8.
Jorgenson
,
P. C. E.
,
Veres
,
J. P.
,
Bommireddy
,
S. R.
,
Nili
,
S.
, and
Suder
,
K. L.
,
2019
, “
Analysis of the Honeywell Uncertified Research Engine (HURE) With Ice Crystal Cloud Ingestion at Simulated Altitudes: Public Version
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90002.
9.
Chalmers
,
J.
,
Davison
,
C.
,
MacLeod
,
J. D.
,
Neuteboom
,
M.
, and
Fuleki
,
D.
,
2019
, “
Icing Test and Measurement Capabilities of the NRC’s Gas Turbine Laboratory
,” SAE Technical Paper 2019-01-1943.
10.
Fuleki
,
D.
,
Neuteboom
,
M.
, and
Chalmers
,
J.
,
2019
, “
Ice Crystal Icing Test Design and Execution for the ALF502 Vane Segment in the NRC RATFac Cascade Rig
,”
SAE Int. J. Adv. Curr. Prac. Mobil.
,
2
(
1
), pp.
4
14
.
11.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D. R. H.
,
Jones
,
G.
,
Reed
,
A.
, and
Collier
,
B.
,
2018
, “
Experimental Studies of Ice Crystal Accretion on an Axisymmetric Body at Engine-Realistic Conditions
,”
2018 Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 25–29
, AIAA Paper No. 2018-4223.
12.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D.
,
Parker
,
L.
,
Forsyth
,
P.
,
Ifti
,
S. H.
,
Jones
,
G.
,
Collier
,
B.
, and
Reed
,
A.
,
2019
, “
Experimental Study and Analysis of Ice Crystal Accretion on a Gas Turbine Compressor Stator Vane
,” SAE Technical Paper 2019-01-1927.
13.
Currie
,
T. C.
, and
Fuleki
,
D.
,
2016
, “
Experimental Results for Ice Crystal Icing on Hemispherical and Double Wedge Geometries at Varying Mach Numbers and Wet Bulb Temperatures
,”
8th AIAA Atmospheric and Space Environments Conference
,
Washington, D.C.
,
June 13–17
, AIAA Paper No. 2016-3740.
14.
Bartkus
,
T. P.
,
Tsao
,
J.-C.
, and
Struk
,
P. M.
,
2019
, “
Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model During Ice Crystal Icing
,” SAE Technical Paper 2019-01-2016.
15.
Tsao
,
J.-C.
,
Struk
,
P.
, and
Oliver
,
M.
,
2014
, “
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
,”
6th AIAA Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 16–20
, AIAA Paper No. 2014-3044.
16.
Kintea
,
D. M.
,
2016
, “
Hydrodynamics and Thermodynamics of Ice Particle Accretion
,”
Ph.D. thesis
,
TU Darmstadt
,
Darmstadt, Germany
.
17.
Grieb
,
H.
,
2009
,
Verdichter für Turbo-Flugtriebwerke
,
Springer-Verlag Berlin Heidelberg
,
Berlin, Heidelberg
.
18.
Veres
,
J. P.
,
Jorgenson
,
P. C. E.
, and
Jones
,
S. M.
,
2016
, “
Modeling of Highly Instrumented Honeywell Turbofan Engine Tested With Ice Crystal Ingestion in the NASA Propulsion System Laboratory
,”
8th AIAA Atmospheric and Space Environments Conference
,
Washington, D.C.
,
June 13–17
, AIAA Paper No. 2016-3895.
19.
Veres
,
J. P.
,
Jorgenson
,
P. C. E.
,
Jones
,
S. M.
, and
Nili
,
S.
,
2017
, “
Modeling of a Turbofan Engine With Ice Crystal Ingestion in the NASA Propulsion System Laboratory
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63202.
20.
Schiewe
,
C.
,
Neuburger
,
N.
, and
Staudacher
,
S.
,
2019
, “
How Future Propulsion Systems Influence Future Component Testing: Latest Results From Stuttgart University´s Altitude Test Facility
,”
Proceedings of Global Power and Propulsion Society, Technical Conference 2019
,
Zurich, Switzerland
,
Jan. 15–16
.
21.
Wood
,
R. J.
,
Strazisar
,
T.
, and
Hathaway
,
M. D.
,
1990
, “
Test Cases for Computation of Internal Flows in Aero Engine Components: VI.2 Test Case E/CO-2 Single Transonic Fan Rotor
,” Advisory Group for Aerospace Research and Development, Advisory Report No. AGARD-AR-275, Neuilly-sur-Seine, France.
22.
Hathaway
,
M. D.
,
1986
, “
Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan Stator Row
,”
Ph.D. thesis
,
Iowa State University
,
IA
.
23.
Ozcer
,
I.
,
Switchenko
,
D.
,
Baruzzi
,
G. S.
, and
Chen
,
J.
,
2019
, “
Multi-Shot Icing Simulations With Automatic Re-Meshing
,” SAE Technical Paper 2019-01-1956.
24.
Messinger
,
L. B.
,
1953
, “
Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed
,”
J. Aeronaut. Sci.
,
20
(
1
), pp.
29
42
.
25.
ANSYS Inc.
,
2019
, “
ANSYS FENSAP-ICE User Manual, Release 2019 R2
,” ANSYS, Inc., Canonburg, PA, pp.
114
115
.
26.
Nilamdeen
,
S.
, and
Habashi
,
W. G.
,
2011
, “
Multiphase Approach Toward Simulating Ice Crystal Ingestion in Jet Engines
,”
J. Propul. Power
,
27
(
5
), pp.
959
969
.
27.
Currie
,
T.
,
Struk
,
P.
,
Tsao
,
J.-C.
,
Fuleki
,
D.
, and
Knezevici
,
D.
,
2012
, “
Fundamental Study of Mixed-Phase Icing With Application to Ice Crystal Accretion in Aircraft Jet Engines
,”
4th AIAA Atmospheric and Space Environments Conference
,
New Orleans, LA
,
June 25–28
, AIAA Paper No. 2012-3035.
28.
Feulner
,
M.
,
Liao
,
S.
,
Rose
,
B.
, and
Liu
,
X.
,
2015
, “
Ice Crystal Ingestion in a Turbofan Engine
,” SAE Technical Paper 2015-01-2146.
29.
Stull
,
R. B.
,
2017
,
Practical Meteorology: An Algebra-Based Survey of Atomspheric Science
,
UBC
,
Vancouver
.
30.
Bartkus
,
T. P.
,
Struk
,
P. M.
, and
Tsao
,
J.-C.
,
2018
, “
Evaluation of a Thermodynamic Ice Crystal Icing Model Using Experimental Ice Accretion Data
,”
2018 Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 25–29
, AIAA Paper No. 2018-4129.
31.
Baehr
,
H. D.
, and
Stephan
,
K.
,
2019
,
Wärme- und Stoffübertragung
,
Springer-Verlag Berlin Heidelberg
,
Berlin, Heidelberg
.
You do not currently have access to this content.