Abstract

Fine particulate deposition testing was conducted with an effusion plate geometry representative of a gas turbine combustor liner. Preheated coolant air with airborne particulate was fed into an effusion plate test fixture with the flow parallel to the target plate. The test fixture was in an electric kiln that establishes elevated plate temperature, similar to a gas turbine combustor. Test variables include hole diameter, length/diameter ratio, inclination angle, and compound angle. In addition, coolant and plate temperature were varied independently to determine their influence. All tests were continued until the effusion holes had blocked to produce a 25% reduction in mass flowrate while maintaining constant pressure ratio. The blockage rate was found to be more sensitive to flow temperature than to plate temperature over the range studied. Blockage rate was insensitive to effusion hole diameter from 0.5 to 0.75 mm but increased dramatically for hole diameter below 0.5 mm. Blockage shows a moderate increase with hole length/diameter ratio. The strongest dependency was found with the inclination angle; roughly an order of magnitude increase in blockage rate was documented when increasing from a 30 deg to 150 deg. A compound angle of 45 deg caused a negligible change in blockage rate, while a compound angle of 90 deg increased blockage rate for low inclination angles while decreasing it for high inclination angles. For the flow angle dependency, interpretation is provided by means of computational fluid dynamics (CFD) simulations of the particulate delivery and initial deposition location prediction using the Ohio State University (OSU) deposition model.

References

1.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J. P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME Paper 98-GT-416
.
2.
Borello
,
D.
,
Cardillo
,
L.
,
Corsini
,
A.
,
Delibria
,
G.
,
Rispoli
,
F.
,
Salvagni
,
A.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2016
, “
Modelling of Particle Transport, Erosion, and Deposition in Power Plant Gas Paths
,”
2016 ASME Turbo Expo, GT2016-57984
.
3.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
. 10.1115/1.4006236
4.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
J. Eng. Gas Turbines Power.
,
115
(
3
), pp.
641
651
. 10.1115/1.2906754
5.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air, American Society of Mechanical Engineers
,
Munich, Germany
,
May 8–11
,
American Society of Mechanical Engineers
, p.
V003T01A051
.
6.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
599
607
. 10.1115/1.2720485
7.
Cardwell
,
N. D.
,
Thole
,
K.
, and
Burd
,
S. W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
. 10.1115/1.3106702
8.
Whitaker
,
S.
,
Peterson
,
B.
,
Miller
,
A.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
2016 ASME Turbo Expo, GT2016-57413
.
9.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,”
2017 ASME Turbo Expo, GT2017-64946
.
10.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2017
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102605
. 10.1115/1.4038550
11.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
. 10.1080/02786829208959537
12.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Impacts in Gas Turbine Components
,”
2013 ASME Turbo Expo, GT2013-95623
.
13.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
. 10.1115/1.4035921
14.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Montomoli
,
F.
, and
di Mare
,
L.
,
2017
, “
EBFOG: Deposition, Erosion, and Detachment on High Pressure Turbine Vanes
,”
2017 IGTI, GT2017-64526
.
15.
Barker
,
B.
,
Hsu
,
K.
,
Varney
,
B.
,
Boulanger
,
A.
,
Hutchinson
,
J.
, and
Ng
,
W. F.
,
2017
, “
An Experiment-Based Sticking Model for Heated Sand
,”
2017 ASME Turbo Expo, GT2017-64421
.
16.
Yu
,
K.
, and
Tafti
,
D.
,
2017
, “
Size and Temperature Dependent Deposition Model of Micro-Sized Sand Particles
,”
2017 IGTI in Charlotte, NC
,
June 26–30, 2017
,
GT2017-63792
.
17.
Salazar-Banda
,
G. R.
,
Felicetti
,
M. A.
,
Gonçalves
,
J. A. S.
,
Coury
,
J. R.
, and
Aguiar
,
M. L.
,
2006
, “
Determination of the Adhesion Force Between Particles and a Flat Surface, Using Centrifuge Technique
,”
Powder Technol.
,
173
(
2
), pp.
107
117
. 10.1016/j.powtec.2006.12.011
18.
Bowling
,
R. A.
,
1988
, “A Theoretical Review of Particle Adhesion,”
Particles on Surfaces I
,
K. L.
Mittal
, ed.,
© Plenum Press
,
New York
.
19.
Ranade
,
M. B.
,
1987
, “
Adhesion and Removal of Fine Particles on Surfaces
,”
Aerosol Sci. Technol.
,
7
(
2
), pp.
161
176
. 10.1080/02786828708959155
20.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
AIAA SciTech 2018, AIAA-2018-0391
.
21.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
. 10.1115/1.2903901
22.
West
,
W. E.
, and
Westwater
,
J. W.
,
1953
, “
Radiation-Conduction Correction for Temperature Measurements in Hot Gases
,”
Ind. Eng. Chem.
,
45
(
10
), pp.
2152
2156
. 10.1021/ie50526a022
23.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
, and
Bons
,
J. P.
,
2011
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part I—Experimental Characteristics of Four Coal Ash Types
,”
2011 ASME Turbo Expo, GT2011-45894
.
24.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane with Non-Uniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
. 10.1115/1.4032924
25.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
2006 ASME Turbo Expo, GT2006-90067
.
26.
Kandebo
,
S. W.
,
1990
, “
Western Manufacturers Say Powerplants Can Withstand Rigors of Mideast Climate
,”
Aviation Week Space Technol.
,
133
, pp.
25
26
.
27.
Dunn
,
M. G.
,
Padova
,
C.
, and
Adams
,
R. E.
,
1987
,
Operation of Gas Turbine Engines in Dust-Laden Environments
,
AGARD-Advanced Technology Aero Engine Components
,
Paris, France
.
28.
Whitaker
,
S.
, and
Bons
,
J.
,
2018
, “
An Improved Particle Impact Model by Accounting for Rate of Strain and Stochastic Rebounds
,”
2018 ASME Turbo Expo, GT2018-77158
.
29.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2018
, “
Modeling Deposition in Turbine Cooling Passages with Temperature Dependent Adhesion and Mesh Morphing
,”
2018 ASME Turbo Expo, GT2018-76251
.
30.
Healy
,
D.
, and
Young
,
J.
,
2010
, “
An Experimental and Theoretical Study of Particle Deposition Due to Thermophoresis and Turbulence in an Annular Flow
,”
Int. J. Multiphase Flow
,
36
(
11
), pp.
870
881
. 10.1016/j.ijmultiphaseflow.2010.07.006
31.
Pinon
,
A. V.
,
Wierez-Kien
,
M.
,
Craciun
,
A. D.
,
Beyer
,
N.
,
Gallani
,
J. L.
, and
Rastei
,
M. V.
,
2016
, “
Thermal Effects on van der Waals Adhesive Forces
,”
Phys. Rev. B
,
93
(
3
), p.
035424
. 10.1103/PhysRevB.93.035424
32.
Libertowski
,
N.
,
Geiger
,
G.
, and
Bons
,
J. P.
,
2019
, “
Incorporating Deposit Erosion Into the OSU Deposition Model With Relevance for Deposition in Internal Cooling Geometries
,”
2019 ASME Turbo Expo, GT2019-91785
.
You do not currently have access to this content.