Abstract

A computational analysis is performed to determine if particulate impact events on the external surfaces of gas turbine engine rotor blades can be faithfully replicated in an experimental rotor cascade. The general electric (GE) energy efficient engine (E3) first-stage turbine flow-field at cruise conditions is first solved using a steady-state explicit mixing plane (MP) approach. To model flow in the cascade, a single E3 rotor periodic domain is then constructed with an inlet section matching the relative flow incidence angle from the mixing plane calculation. The mass-averaged relative flow conditions at the inlet and outlet of the mixing plane rotor section are imposed on the cascade boundaries and a steady solution is found. Particles with diameters ranging from 1 to 25 µm are tracked through each domain and the OSU deposition model is implemented to dictate the sticking and rebounding action of particles impacting solid surfaces. It is discovered that both the locations and parameters of the impacts in the cascade vary significantly from the engine environment. For smaller particles, this is credited to a stronger upstream influence of the blade on the cascade flow-field. As size increases, differences in deposition are instead driven by the interaction of the full-stage vane with the particles. The lack of a vane in the cascade causes drastically different particle inlet vectors over the rotor than are seen in the engine setting. The radial differences of particle impact locations are explored, and the role that pressure plays is considered.

References

1.
Ai
,
W.
,
Laycock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
,
2011
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Flyash Near Film Cooling Holes
,”
Energy Fuels (Am. Chem. Soc. Publ.)
,
25
(
3
), pp.
1066
1076
. 10.1021/ef101375g
2.
Cardwell
,
N. D.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
. 10.1115/1.3106702
3.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2018
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102605
. 10.1115/1.4038550
4.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
. 10.1115/1.4004757
5.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
. 10.1115/1.4007057
6.
Cosher
,
C. R.
, and
Dunn
,
M.
,
2016
, “
Comparison of the Sensitivity to Foreign Particle Ingestion of the GE-F101 and P/W-F100 Engines to Modern Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
121201
. 10.1115/1.4034021
7.
Simon
,
D. L.
,
Csank
,
J.
, and
Rinehart
,
A.
,
2015
, “
Vehicle Integrated Propulsion Research (VIPR) Gas Path
Diagnostics
and Volcanic Ash Ingestion Test Results
,”
5th NASA GRC Propulsion Control and Diagnostics (PCD) Workshop
,
Cleveland, OH
,
Sept. 16–17
.
8.
Bernardini
,
C.
,
Benton
,
S. I.
,
Lee
,
J. D.
,
Bons
,
J. P.
,
Chen
,
J.-P.
, and
Martelli
,
F.
,
2014
, “
Steady VGJ Flow Control on a Highly Loaded Transonic LPT Cascade: Effects of Compressibility and Roughness
,”
ASME J. Turbomach.
,
136
(
11
), p.
111003
. 10.1115/1.4028214
9.
Zhang
,
X.
, and
Hodson
,
H.
,
2004
, “
The Combined Effect of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
,”
ASME J. Turbomach.
,
127
(
3
), pp.
479
488
. 10.1115/1.1860571
10.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
. 10.1080/02786829208959537
11.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Impacts in Gas Turbine Components
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 6B: Turbomachinery
,
San Antonio, TX
, p.
V06BT37A041
. 10.1115/GT2013-95623
12.
Tafti
,
D. K.
, and
Sreedharan
,
S. S.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition with the Application to a Leading Edge Turbine Vane
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 4: Heat Transfer, Parts A and B
,
Glasgow, UK
, pp.
615
626
. 10.1115/GT2010-23655
13.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Montomoli
,
F.
, and
di Mare
,
L.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
. 10.1115/1.4039181
14.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
. 10.1115/1.4035921
15.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Kuashik
,
D.
,
Rivir
,
R.
, and
Puneet
,
A.
,
2004
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
. 10.1115/1.1860376
16.
Ghenaiet
,
A.
,
2014
, “
Study of Particle Ingestion Through Two-Stage Gas Turbine
,”
ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 2C: Turbomachinery
,
Düsseldorf, Germany
, p.
V02CT38A020
. 10.1115/GT2014-25759
17.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081303
. 10.1115/1.4024127
18.
Suzuki
,
M.
,
Kazuaki
,
I.
, and
Makoto
,
Y.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), pp.
125
133
. 10.1007/s11630-008-0125-7
19.
Yang
,
H.
, and
Boulanger
,
J.
,
2013
, “
The Whole Annulus Computations of Particulate Flow and Erosion in an Axial Fan
,”
ASME J. Turbomach.
,
135
(
1
), p.
011040
. 10.1115/1.4006564
20.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2017
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
. 10.1115/1.4036008
21.
Timko
,
L. P.
,
1982
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA CR-168289.
22.
Siemens
,
2018
, “
Star-CCM+ Tutorial Guide version 13.02
.”
23.
Saxer
,
A.
, and
Giles
,
M.
,
1991
, “
Quasi 3-D Non-Reflecting Boundary Condition for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
. 10.2514/3.23618
24.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 2C: Turbomachinery
,
Montreal, Quebec, Canada
, p.
V02CT44A026
.
25.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
.
26.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow
,”
ASME J. Turbomach.
,
114
(
3
), pp.
652
659
. 10.1115/1.2929189
You do not currently have access to this content.