Abstract

Cross flow and coolant maldistribution are the common design challenges for impingement cooling in modern gas turbine. This paper reports a novel multi-stage impingement cooling scheme for combustor liner. The design concept and general working mechanism are introduced in the Part I paper. This Part II paper presents the design flexibilities and optimization strategies. Conjugate heat transfer (CHT) analysis was conducted at a range of Reynolds numbers to assess the thermal performance, loss penalty, and the working mechanism behind. The results show that varying the jet hole diameter in each cooling stage can be an effective design optimization strategy in balancing the cooling requirement and loss penalty. Inter-stage bypass design is also another design flexibility offered by the multi-stage scheme to regulate the cooling air consumption at different stages. With these optimization strategies, the target surface temperature and local gradient can be effectively reduced with reasonable pressure loss with 50% reduction in the cooling air consumption compared to conventional single-stage impingement design. This multi-stage impingement concept can be practically applied to gas turbine combustor liner and turbine blade cooling.

References

1.
Liu
,
K.
,
Hubbard
,
P.
,
Sadasivuni
,
S.
, and
Bulat
,
G.
,
2019
, “
Extension of Fuel Flexibility by Combining Intelligent Control Methods for Siemens SGT-400 Dry Low Emission Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011003
. 10.1115/1.4040689
2.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2002
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME
Paper No. GT2002-30183
. 10.1115/gt2002-30183
3.
Greenwood
,
S. A.
,
2000
, “
Low Emission Combustion Technology for Stationary Gas Turbine Engines
,”
Proceedings of the 29th Turbomachinery Symposium
,
Texas A&M University
,
College Station, TX
, pp.
125
133
.
4.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor & Francis Group
,
Boca Raton, FL
, pp.
329
362
.
5.
Xie
,
R.
,
Wang
,
H.
,
Xu
,
B.
, and
Wang
,
W.
,
2018
, “
A Review of Impingement Jet Cooling in Combustor Liner
,”
ASME Paper No. GT2018-76335
.
6.
Miller
,
M.
,
Natsui
,
G.
,
Ricklick
,
M.
,
Kapat
,
J.
, and
Schilp
,
R.
,
2014
, “
Heat Transfer in a Coupled Impingement-Effusion Cooling System
,”
ASME Paper GT2014-26416
.
7.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transf.
,
37
(
18
), pp.
2859
2869
. 10.1016/0017-9310(94)90340-9
8.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement With Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
”,
NASA Contractor Report No. 3373
.
9.
Liu
,
K.
, and
Zhang
,
Q.
,
2020
, “
A Novel Multi-Stage Impingement Cooling Scheme—Part I: Concept Study
,”
ASME J. Turbomach.
https://dx.doi.org/10.1115/1.4048183
10.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1987
, “
Full Coverage Impingement Heat Transfer: The Influence of Crossflow
,”
AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference
,
San Diego, CA
, AIAA-87-2010, pp.
1
9
.
11.
Rekingen
,
J. H.
,
Othmarsingen
,
A. K.
,
Mandach
,
T. S.
, and
Seon
,
R. T.
,
1995
, “
Apparatus for Impingement Cooling
”,
US Patent No. 5467815
.
12.
Hebert
,
R.
,
Ekkad
,
S. V.
,
Khanna
,
V.
,
Abreu
,
M.
, and
Moon
,
H. K.
,
2004
, “
Heat Transfer Study of a Novel Low-Crossflow Design for Jet Impingement
,”
ASME International Mechanical Engineering Congress and Exposition, Paper No. IMECE2004-60468
, pp.
583
588
.
13.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2007
, “
Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling
,”
ASME Paper GT2007-27390
.
14.
Liu
,
K.
,
2017
, “
A Combustor Assembly With Impingement Plates for Redirecting Cooling Air Flow in Gas Turbine Engines
”,
WO Patent No. 2017190967A1
.
15.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transf.
,
37
(
12
), pp.
1687
1697
. 10.1016/0017-9310(94)90059-0
16.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp Therm Fluid Sci.
,
13
(
1
), pp.
71
80
. 10.1016/0894-1777(96)00015-5
17.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Convective Heat Transfer to a Confined Impinging Array of Air Jets With Spent Air Exits
,”
J Heat Trans-T ASME.
,
116
(
3
), pp.
570
576
. 10.1115/1.2910908
18.
Gulati
,
P.
,
Katti
,
V.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of the Shape of the Nozzle on Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet
,”
Int J Therm Sci.
,
48
(
3
), pp.
602
617
. 10.1016/j.ijthermalsci.2008.05.002
19.
Parida
,
P. R.
,
Ekkad
,
S. V.
, and
Ngo
,
K.
,
2011
, “
Experimental and Numerical Investigation of Confined Oblique Impingement Configurations for High Heat Flux Applications
,”
Int J Therm Sci.
,
50
(
6
), pp.
1037
1050
. 10.1016/j.ijthermalsci.2011.01.010
20.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of the Influence of the Impingement Gap on the Effect of Crossflow
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
Minneapolis, MN
,
Paper No. HTC2013-17180
.
21.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modelling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
. 10.1115/1.1861921
22.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of Impingement Jet Array Flat Wall Cooling Aerodynamics With Single Sided Flow Exit
,”
ASME
Paper No. GT2013-95343
. 10.1115/gt2013-95343
23.
El-Jummah
,
A. M.
,
Abdul Hussain
,
R. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2014
, “
Conjugate Heat Transfer CFD Predictions of Impingement Heat Transfer: Influence of the Number of Holes for a Constant Pitch-to-Diameter Ratio X/D
,”
ASME
Paper No. GT2014-25268
. 10.1115/gt2014-25268
24.
El-Jummah
,
A. M.
,
Nazari
,
A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2017
, “
Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
,”
ASME
Paper No. GT2017-63494
. 10.1115/gt2017-63494
25.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2018
, “
Enhancement of Impingement Heat Transfer With the Crossflow Normal to Ribs and Pins Between Each Row of Holes
,”
ASME
Paper No. GT2018-76969
. 10.1115/gt2018-76969
You do not currently have access to this content.