Abstract

In this paper, the effects of an array of herringbone riblets with different riblet geometry (height and spacing) and start locations on the pressure losses in a cascade of diffuser blades are investigated over a range of low Reynolds numbers (0.50 × 105–1.00 × 105). The herringbone riblets with a given geometry are found to produce a profound modification to the wake structure above certain critical Reynolds numbers. It is also found that within the range of parameters tested an increase in riblet height and riblet spacing results in an onset of significant control effect at a lower Reynolds number, which is accompanied by a slight reduction in zone-averaged loss coefficient and flow turning angle. An upstream shift of the start position of the riblet array along the blades enables the riblets to become effective at a lower Reynolds number at the expense of a reduced loss reduction and flow turning angle. A semi-empirical relationship between the ratio of riblet height to local baseline boundary layer displacement thickness and the critical Reynolds number is established using the present experimental data. A preliminary methodology for designing the herringbone riblets to ensure an effective control of 2D flow separations around the mid-span of diffuser blades over a specified range of Reynolds numbers is also proposed.

References

1.
Gad-el-Hak
,
M.
,
2007
,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, UK
.
2.
Zhang
,
S.
, and
Zhong
,
S.
,
2010
, “
Experimental Investigation of Flow Separation Control Using an Array of Synthetic Jets
,”
AIAA J.
,
48
(
3
), pp.
611
623
. 10.2514/1.43673
3.
Quan
,
P.
,
Zhong
,
S.
,
Liu
,
Q.
, and
Li
,
L.
,
2018
, “
Attenuation of Flow Separation Using Herringbone Riblets at M = 5
,”
AIAA J.
,
57
(
1
), pp.
142
152
. 10.2514/1.J057215
4.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
. 10.1115/1.4003254
5.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2006
, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
,
44
(
1
), pp.
51
57
. 10.2514/1.2903
6.
Şahin
,
F. C.
,
2017
, “
Experimental Investigation on Flow Improvement in Compressor Cascades
,”
Int. J. Energy Res.
,
41
(
4
), pp.
526
539
. 10.1002/er.3636
7.
Mueller
,
T. J.
, and
Batil
,
S. M.
,
1982
, “
Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
20
(
4
), pp.
457
463
. 10.2514/3.51095
8.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
. 10.1115/1.3066315
9.
Evans
,
C. J.
, and
Bryan
,
J. B.
,
1999
, “
Structured, Textured or Engineered Surfaces
,”
CIRP Ann.
,
48
(
2
), pp.
541
556
. 10.1016/S0007-8506(07)63233-8
10.
Zhang
,
X.
,
Zhang
,
D. Y.
,
Pan
,
J. F.
,
Li
,
X.
, and
Chen
,
H. W.
,
2013
, “
Controllable Adjustment of Bio-Replicated Shark Skin Drag Reduction Riblets
,”
Appl. Mech. Mater.
,
461
, pp.
677
680
. 10.4028/www.scientific.net/AMM.461.677
11.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Reduction Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
. 10.2514/3.60126
12.
Lietmeyer
,
C.
,
Oehlert
,
K.
, and
Seume
,
J. R.
,
2012
, “
Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior
,”
ASME J. Turbomach.
,
135
(
1
), p.
011036
. 10.1115/1.4006518
13.
Chen
,
H. W.
,
Rao
,
F. G.
,
Zhang
,
D. Y.
, and
Shang
,
X. P.
,
2013
, “
Drag Reduction Study About Bird Feather Herringbone Riblets
,”
Appl. Mech. Mater.
,
461
, pp.
201
205
. 10.4028/www.scientific.net/AMM.461.201
14.
Chen
,
H.
,
Rao
,
F.
,
Shang
,
X.
,
Zhang
,
D.
, and
Hagiwara
,
I.
,
2014
, “
Flow Over Bio-Inspired 3D Herringbone Wall Riblets
,”
Exp. Fluids
,
55
(
3
), pp.
1
7
.
15.
Xu
,
F.
,
Zhong
,
S.
, and
Zhang
,
S.
,
2018
, “
Vortical Structures and Development of Laminar Flow Over Convergent-Divergent Riblets
,”
Phys. Fluids
,
30
(
5
), p.
051901
. 10.1063/1.5027522
16.
Kevin
,
K.
,
Monty
,
J. P.
,
Bai
,
H. L.
,
Pathikonda
,
G.
,
Nugroho
,
B.
,
Barros
,
J. M.
,
Christensen
,
K. T.
, and
Hutchins
,
N.
,
2017
, “
Cross-Stream Stereoscopic Particle Image Velocimetry of a Modified Turbulent Boundary Layer Over Directional Surface Pattern
,”
J. Fluid Mech.
,
813
, pp.
412
435
. 10.1017/jfm.2016.879
17.
Xu
,
F.
,
Zhong
,
S.
, and
Zhang
,
S.
,
2019
, “
Statistical Analysis of Vortical Structures in Turbulent Boundary Layer Over Directional Grooved Surface Pattern With Spanwise Heterogeneity
,”
Phys. Fluids
,
31
(
8
), p.
085110
. 10.1063/1.5110048
18.
Benschop
,
H.
, and
Breugem
,
W.-P.
,
2017
, “
Drag Reduction by Herringbone Riblet Texture in Direct Numerical Simulations of Turbulent Channel Flow
,”
J. Turbul.
,
18
(
8
), pp.
717
759
. 10.1080/14685248.2017.1319951
19.
Liu
,
Q.
,
Zhong
,
S.
, and
Li
,
L.
,
2017
, “
Reduction of Pressure Losses in a Linear Cascade Using Herringbone Riblets
,”
ASME Turbo Expo 2017, Paper No. GT2017-63960
,
Charlotte, NC
,
June
, American Society of Mechanical Engineers, New York, p. V02AT39A025.
20.
Liu
,
Q.
,
Zhong
,
S.
, and
Li
,
L.
,
2019
, “
Effects of Bio-Inspired Micro-Scale Surface Patterns on the Profile Losses in a Linear Cascade
,”
ASME J. Turbomach.
,
141
(
12
):
121006
. 10.1115/1.4044612
21.
Dixon
,
S. L.
, and
Hall
,
C
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Dominy
,
R.
, and
Hodson
,
H
,
1992
, “
An Investigation of Factors Influencing the Calibration of 5-Hole Probes for 3-D Flow Measurements
,”
ASME Turbo Expo 1992, Paper No. 92-GT-216
,
Cologne, Germany
,
June
, American Society of Mechanical Engineers, New York, p. V001T001A077.
23.
Roberts
,
W.
,
1975
, “
The Effect of Reynolds Number and Laminar Separation on Axial Cascade Performance
,”
J. Eng. Power
,
97
(
2
), pp.
261
273
. 10.1115/1.3445978
24.
Wang
,
S.
,
Zhou
,
Y.
,
Alam
,
M. M.
, and
Yang
,
H.
,
2014
, “
Turbulent Intensity and Reynolds Number Effects on an Airfoil at Low Reynolds Numbers
,”
Phys. Fluids
,
26
(
11
), p.
115107
. 10.1063/1.4901969
25.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
. 10.2514/1.42362
26.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P. N.
,
1969
, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
37
(
2
), pp.
383
413
. 10.1017/S0022112069000619
You do not currently have access to this content.