Impinging jet arrays are typically used to cool several gas turbine parts. Some examples of such applications can be found in the internal cooling of high-pressure turbine airfoils or in the turbine blade tip clearances control of aero-engines. The effect of the wall-to-jets temperature ratio (TR) on heat transfer is generally neglected by the correlations available in the open literature. In the present contribution, the impact of the temperature ratio on the heat transfer for a real engine active clearance control system is analyzed by means of validated computational fluid dynamics (CFD) computations. At different jets Reynolds number and considering several impingement array arrangements, a wide range of target wall-to-jets temperature ratio is accounted for. Computational results prove that both local and averaged Nusselt numbers reduce with increasing. An in-depth analysis of the numerical data shows that the last mentioned evidence is motivated by both the heat transfer incurring between the spent coolant flow and the fresh jets and the variation of gas properties with temperature through the boundary layer. A scaling procedure, based on the TR power law, was proposed to estimate the Nusselt number at different wall temperature levels necessary to correct available open-literature correlations, typically developed with small temperature differences, for real engine applications.

References

1.
Justak
,
J. F.
, and
Doux
,
C.
,
2009
, “
Self-acting Clearance Control for Turbine Blade Outer Air Seals
,”
ASME Turbo Expo
, GT2009-59683.
2.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2012
, “
Effects of Inlet Temperature Uniformity and Nonuniformity on the Tip Leakage Flow and Rotor Blade Tip and Casing Heat Transfer Characteristics
,”
ASME J. Turbomach
,
134
(
2
), p.
021004
.
3.
Qingjun
,
Z.
,
Jianyi
,
D.
,
Huishe
,
W.
,
Xiaolu
,
Z.
, and
Jianzhong
,
X.
,
2010
, “
Tip Clearance Effects on Inlet Hot Streak Migration Characteristics in High Pressure Stage of a Vaneless Counter-rotating Turbine
,”
ASME J. Turbomach
,
132
(
1
), p.
011005
.
4.
Halila
,
E.
,
Lenahan
,
D.
, and
Thomas
,
T.
,
1982
,
High Pressure Turbine Test Hardware
, NASA CR-167955.
5.
Beck
,
B.
, and
Fasching
,
W.
,
1982
,
CF6 Jet Engine Performance Improvement—Low Pressure Turbine Active Clearance Control
, NASA CR-165557.
6.
Andreini
,
A.
, and
Da Soghe
,
R.
,
2012
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbine Power
,
134
(
5
), p.
052504
.
7.
Da Soghe
,
R.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop for Turbine Casing Impingement Cooling System
,”
ASME J. Turbomach
,
135
(
3
), p.
031017
.
8.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2016
, “
Heat Transfer Augmentation Due to Coolant Extraction on the Cold Side of Active Clearance Control Manifolds
,”
ASME J. Eng. Gas Turbine Power
,
138
(
2
), p.
021507
.
9.
Kercher
,
D.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.
10.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement with Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
11.
Behbahani
,
A.
, and
Goldstein
,
R.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Power
,
105
(
2
), pp.
354
360
.
12.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME Int. J. Heat. Mass. Transfer
,
50
(
1–2
), pp.
367
380
.
13.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J Turbomach
,
129
(
2
), pp.
269
280
.
14.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2008
, “
Effect of Hole Spacing on Spatially-resolved Jet Array Impingement Heat Transfer
,”
ASME Int. J. Heat Mass. Transfer
,
51
(
25–26
), pp.
6243
6253
.
15.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
16.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
17.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
18.
Ahmed
,
F.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “
Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System
,”
ASME Turbo Expo
, GT2011-45251.
19.
Ahmed
,
F.
,
Weigand
,
B.
, and
Meier
,
K.
,
2010
, “
Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System
,”
ASME International Heat Transfer Conference
, IHTC14-22817.
20.
Da Soghe
,
R.
,
Facchini
,
B.
,
Micio
,
M.
, and
Andreini
,
A.
,
2012
, “
Aerothermal Analysis of a Turbine Casing Impingement Cooling System
,”
Int. J. Rotating Mach.
,
2012
, p.
103583
.
21.
Tapinlis
,
O.
,
Choi
,
M.
,
Lewis
,
L. V.
,
Gillespie
,
D. R. H.
, and
Ciccomascolo
,
C.
,
2014
, “
The Effect of Impingement Jet Heat Transfer on Casing Contraction in a Turbine Case Cooling System
,”
ASME Turbo Expo
, GT2014-26749.
22.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-pressure Turbines
,”
J. Propul. Power
,
30
(
4
), p.
1080
.
23.
Fitt
,
A.
,
Forth
,
C.
,
Robertson
,
B.
, and
Jones
,
T.
,
1986
, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
Int. J. Heat. Mass. Transfer
,
29
(
1
), p.
159
.
24.
Kays
,
W.
, and
Crawford
,
M.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
25.
CFX
,
A.
,
2011
,
Solver Theory Guide
,
Ansys, Inc
.
26.
Andreini
,
A.
,
Da Soghe
,
R.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2015
, “
Heat Transfer Enhancement Due to Coolant Extraction on the Cold Side of Effusion Cooling Plates
,”
ASME J. Eng. Gas Turbine Power
,
137
(
12
), p.
122608
.
27.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
, p.
031016
.
28.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Mazzei
,
L.
,
Andreini
,
A.
,
Ciani
,
A.
,
Riccio
,
G.
, and
Marini
,
A.
,
2015
, “
Thermofluid Dynamic Analysis of a Gas Turbine Transition-piece
,”
ASME J. Eng. Gas Turbine Power
,
137
(
6
), p.
062602
.
You do not currently have access to this content.