The leakage flows within the gap between the tips of unshrouded rotor blades and the stationary casing of high-speed turbines are the source of significant aerodynamic losses and thermal stresses. In the pursuit for higher component performance and reliability, shaping the tip geometry offers a considerable potential to modulate the rotor tip flows and to weaken the heat transfer onto the blade and casing. Nevertheless, a critical shortage of combined experimental and numerical studies addressing the flow and loss generation mechanisms of advanced tip profiles persists in the open literature. A comprehensive study is presented in this two-part paper that investigates the influence of blade tip geometry on the aerothermodynamics of a high-speed turbine. An experimental and numerical campaign has been performed on a high-pressure turbine stage adopting three different blade tip profiles. The aerothermal performance of two optimized tip geometries (one with a full three-dimensional contoured shape and the other featuring a multicavity squealer-like tip) is compared against that of a regular squealer geometry. In the second part of this paper, we report a detailed analysis on the aerodynamics of the turbine as a function of the blade tip geometry. Reynolds-averaged Navier-Stokes (RANS) simulations, adopting the Spalart–Allmaras turbulence model and experimental boundary conditions, were run on high-density unstructured meshes using the numecafine/open solver. The simulations were validated against time-averaged and time-resolved experimental data collected in an instrumented turbine stage specifically setup for the simultaneous testing of multiple blade tips at scaled engine-representative conditions. The tip flow physics is explored to explain variations in turbine performance as a function of the tip geometry. Denton's mixing loss model is applied to the predicted tip gap aerodynamic field to identify and quantify the loss reduction mechanisms of the alternative tip designs. An advanced method based on the local triple decomposition of relative motion is used to track the location, size and intensity of the vortical flow structures arising from the interaction between the tip leakage flow and the main gas path. Ultimately, the comparison between the unconventional tip profiles and the baseline squealer tip highlights distinct aerodynamic features in the associated gap flow field. The flow analysis provides guidelines for the designer to assess the impact of specific tip design strategies on the turbine aerodynamics and rotor heat transfer.

References

1.
El-Gabry
,
L. A.
, and
Ameri
,
A. A.
,
2010
, “
Comparison of Steady and Unsteady RANS Heat Transfer Simulations of Hub and Endwall of a Turbine Blade Passage
,”
ASME J. Turbomach.
,
133
(
3
), p.
031010
.
2.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.-P.
,
2011
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
3.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,”
Turbine Blade Tip Design and Tip Clearance Treatment
(VKI Lecture Series, Vol. 2),
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
4.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part I: Shroud Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041001
.
5.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,”
ASME
Paper No. GT2011-46390.
6.
Caloni
,
S.
,
Shahpar
,
S.
, and
Coull
,
J. D.
,
2016
, “
Numerical Investigations of Different Tip Designs for Shroudless Turbine Blades
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
7
), pp.
709
720
.
7.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.
8.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2010
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
(
4
), p.
041010
.
9.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
,
2005
, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp. 14–24.
10.
Zhou
,
C.
, and
Zhong
,
F.
,
2017
, “
A Novel Suction-Side Winglet Design Philosophy for High-Pressure Turbine Rotor Tips
,”
ASME J. Turbomach.
,
139
(
11
), p.
111002
.
11.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.
12.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
.
13.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
14.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2013
, “
Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance
,”
ASME J. Turbomach.
,
136
(
4
), p.
041016
.
15.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2014
, “
Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine
,”
ASME J. Turbomach.
,
137
(
2
), p.
021005
.
16.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
17.
Jung
,
J. s.
,
Kwon
,
O.
, and
Son
,
C.
,
2016
, “
An Investigation on Aerodynamics Loss Mechanism of Squealer Tips of a High Pressure Turbine Blade Using URANS
,”
ASME
Paper No. GT2016-57313.
18.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
.
19.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
20.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
, New York.
21.
Huang
,
A. C.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Clemens
,
E. F.
,
Gegg
,
S. G.
, and
Turner
,
E. R.
,
2013
, “
Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss
,”
ASME J. Turbomach.
,
135
(
5
), p.
051012
.
22.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
23.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
24.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
25.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.
26.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2006
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part I: Three-Dimensional Time-Averaged Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
572
579
.
27.
Gao
,
J.
,
Zheng
,
Q.
,
Li
,
Y.
, and
Yue
,
G.
,
2012
, “
Effect of Axially Non-Uniform Rotor Tip Clearance on Aerodynamic Performance of an Unshrouded Axial Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
2
), pp.
231
244
.
28.
Matsunuma
,
T.
,
2005
, “
Effects of Reynolds Number and Freestream Turbulence on Turbine Tip Clearance Flow
,”
ASME J. Turbomach.
,
128
(
1
), pp.
166
177
.
29.
Morajkar
,
R. R.
,
Klomparens
,
R. L.
,
Eagle
,
W. E.
,
Driscoll
,
J. F.
,
Gamba
,
M.
, and
Benek
,
J. A.
,
2016
, “
Relationship Between Intermittent Separation and Vortex Structure in a Three-Dimensional Shock/Boundary-Layer Interaction
,”
AIAA J.
,
54
(
6
), pp.
1862
1880
.
30.
Kolar
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.
31.
Kolar
,
V.
,
2010
, “
A Note on Integral Vortex Strength
,”
J. Hydrol. Hydromech.
,
58
(
1
), pp.
23
28
.
32.
Wang
,
F.
,
Li
,
W.
, and
Wang
,
S.
,
2016
, “
Polar Cyclone Identification From 4D Climate Data in a Knowledge-Driven Visualization System
,”
Climate
,
4
(
3
), p.
43
.
33.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
34.
Kolar
,
V.
,
2009
, “
Compressibility Effect in Vortex Identification
,”
AIAA J.
,
47
(
2
), pp.
473
475
.
35.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
High Efficiency Cavity Winglets for High Pressure Turbines
,”
ASME
Paper No. GT2014-25261.
36.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
You do not currently have access to this content.