Trailing edge slot film cooling is a widely used method of protecting the thin trailing edge of turbine blades from hot gas impingement. The structures that separate the slots, known as “lands,” come in a variety of configurations which can be broadly classified as either “tapered” or “straight.” This paper examines the effect of the land taper angle on the mixing of the coolant flow with the main flow by comparing three configurations: a case with straight lands, a previously reported case with slightly tapered lands, and a case with strongly tapered lands. In each case, the slot width and the land width at the plane of the slot exit are kept constant. For each configuration, the mean volumetric coolant concentration distribution and three-component velocity field were measured using magnetic resonance imaging (MRI) techniques. It is shown that the land taper angle has a strong effect on the mean flow features and coolant surface effectiveness. Furthermore, the impact of the lands configuration on the flow field and concentration distribution is seen not just in the cutback region, but also in the wake of the blade.

References

1.
Fiala
,
N.
,
Johnson
,
J.
, and
Ames
,
F.
,
2010
, “
Aerodynamics of a Letterbox Trailing Edge: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Aerodynamic Losses and Pressure Distribution
,”
ASME J. Turbomach.
,
132
(
4
), p.
041011
.10.1115/1.3195035
2.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine blade With Trailing Edge Coolant Ejection: Part 1—External Aerodynamics, Total Pressure Losses and Predictions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
238
248
.10.1115/1.1348017
3.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 1—Steady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30471.10.1115/GT2002-30471
4.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 2—Unsteady Framework for Experimental and Computational Results
,”
ASME
Paper No. GT2002-30472.10.1115/GT2002-30472
5.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.10.1115/1.2103094
6.
Ling
,
J.
,
Yapa
,
S.
,
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2013
, “
3D Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot
,”
ASME J. Turbomach.
,
135
(
3
), p. 031018.10.1115/1.4007520
7.
Taslim
,
M.
,
Spring
,
S.
, and
Mehlman
,
B.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.10.2514/3.359
8.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2009
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils—Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
9.
Uzol
,
O.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection: Part 1—Effect of Cut-Back Length, Spanwise Rib Spacing, Free-Stream Reynolds Number and Chordwise Rib Length on Discharge Coefficients
,”
ASME J. Turbomach.
,
123
(
2
), pp.
249
257
.10.1115/1.1351817
10.
Fiala
,
N.
,
Jaswal
,
I.
, and
Ames
,
F.
,
2010
, “
Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
132
(
1
), p. 011017.10.1115/1.3106703
11.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
3D Velocity and Scalar Field Diagnostics Using Magnetic Resonance Imaging With Applications in Film-Cooling
,” Stanford University, Stanford, CA, Report No. TF-123.
12.
Benson
,
M.
,
Elkins
,
C.
,
Yapa
,
S.
,
Ling
,
J.
, and
Eaton
,
J.
,
2012
, “
Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling
,”
Exp. Fluids
,
52
(
6
), pp.
1415
1430
.10.1007/s00348-012-1260-1
13.
Choi
,
J.
,
Mhetras
,
S.
,
Han
,
J.-C.
,
Lau
,
S.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Transfer
,
130
(
1
), p.
012201
.10.1115/1.2780174
14.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2011
, “
Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge
,”
ASME
Paper No. GT2011-45355.10.1115/GT2011-45355
15.
Ling
,
J.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2014
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME
Paper No. GT2014-25578.10.1115/GT2014-25578
16.
Barigozzi
,
G.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2012
, “
Experimental Investigation of the Effects of Blowing Conditions and Mach Number on the Unsteady Behavior of Coolant Ejection Through a Trailing Edge Cutback
,”
Int. J. Heat Fluid Flow
,
37
(
1
), pp.
37
50
.10.1016/j.ijheatfluidflow.2012.07.001
17.
Schneider
,
H.
,
Bauer
,
H.
,
von Terzi
,
D.
, and
Rodi
,
W.
,
2012
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
ASME
Paper No. GT2012-69771.10.1115/GT2012-69771
18.
Papamoschou
,
D.
, and
Roshko
,
A.
,
1988
, “
The Compressible Turbulent Shear Layer: An Experimental Study
,”
J. Fluid Mech.
,
197
, pp.
453
477
.10.1017/S0022112088003325
19.
Maqbool
,
D.
, and
Cadou
,
C.
,
2011
, “Development of an Experiment for Measuring Film Cooling Performance in Supersonic Flows,” M.S. thesis, University of Maryland, College Park, MD.
20.
Elkins
,
C.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.10.1007/s00348-003-0587-z
21.
Pelc
,
N.
,
Sommer
,
F.
,
Li
,
K.
,
Brosnan
,
T.
,
Herfkens
,
R.
, and
Enzmann
,
D.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
,
10
(
3
), pp.
125
147
.
22.
Elkins
,
C.
,
Markl
,
M.
,
Iyengar
,
A.
,
Wicker
,
R.
, and
Eaton
,
J.
,
2004
, “
Full-Field Velocity and Temperature Measurements Using Magnetic Resonance Imaging in Turbulent Complex Internal Flows
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
702
710
.10.1016/j.ijheatfluidflow.2004.05.017
23.
Yang
,
Z.
, and
Hu
,
H.
,
2011
, “
Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique
,”
J. Propul. Power
,
27
(
3
), pp.
700
709
.10.2514/1.B34070
You do not currently have access to this content.