This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In the first part of the paper, the design methodology of the cooling channel was presented. In this second part, the optimized design is validated. The results obtained with the numerical methodology described in Part I are checked against pressure measurements and particle image velocimetry (PIV) measurements. The experimental campaign is carried out on a magnified model of a two-legged cooling channel that reproduces the geometrical and aerodynamical features of its numerical counterpart. Both the original profile and the optimized profile are tested. The latter proves to outperform the original geometry by about 36%, in good agreement with the numerical predictions. Two-dimensional PIV measurements performed in planes parallel to the plane of the bend highlight merits and limits of the computational model. Despite the well-known limits of the employed eddy viscosity model, the overall trends are captured. To assess the impact of the aerodynamic optimization on the heat transfer performance, detailed heat transfer measurements are carried out by means of liquid crystals thermography. The optimized geometry presents overall Nusselt number levels only 6% lower with respect to the standard U-bend. The study demonstrates that the proposed optimization method based on an evolutionary algorithm, a Navier–Stokes solver, and a metamodel of it is a valid design tool to minimize the pressure loss across a U-bend in internal cooling channels without leading to a substantial loss in heat transfer performance.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Weigand
,
B.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2006
, “
Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
179
193
.10.1111/j.1749-6632.2001.tb05851.x
3.
Humphrey
,
J. A. C.
,
Whitelaw
,
J. H.
, and
Yee
,
G.
,
1981
, “
Turbulent Flow in a Square Duct With Strong Curvature
,”
J. Fluid Mech.
,
103
, pp.
443
463
.10.1017/S0022112081001419
4.
Chang
,
S. M.
,
Humphrey
,
J. A. C.
, and
Modavi
,
A.
,
1983
, “
Turbulent Flow in a Strongly Curved U-Bend and Downstream Tangent of Square Cross-Sections
,”
PCH, PhysicoChem. Hydrodyn.
,
4
, pp.
243
269
.
5.
Monson
,
D. J.
, and
Seegmiller
,
H. L.
,
1992
, “
An Experimental Investigation of Subsonic Flow in a Two Dimensional U-Duct
,” NASA Report No. TM-103931.
6.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H. H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
, pp.
590
596
.10.1115/1.2836706
7.
Liou
,
T.-M.
, and
Chen
,
C.-C.
,
1999
, “
LDV Study of Developing Flow Through a Smooth Duct With a 180 Deg Straight-Corner Turn
,”
ASME J. Turbomach.
,
121
(
1
), pp.
167
174
.10.1115/1.2841228
8.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J.-C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 Deg Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4809
4822
.10.1016/S0017-9310(02)00192-8
9.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 Deg Bend
,” ASME Paper No. 98-GT-544.
10.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1996
, “
Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: A Review
,”
Int. J. Heat Fluid Flow
,
16
, pp.
454
470
.10.1016/0142-727X(95)00072-X
11.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
677
681
.10.1115/1.3239623
12.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
, pp.
569
576
.10.1115/1.2841354
13.
Bonhoff
,
B.
,
Leusch
,
J.
, and
Johnson
,
B. V.
,
1999
, “
Predictions of Flow and Heat Transfer in Sharp 180-Deg Turns of Gas Turbine Coolant Channels With and Without Turning Vanes
,”
33rd National Heat Transfer Conference
, Albuquerque, NM, August 15–17.
14.
Zehner
,
S.
,
Steinbrück
,
H.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2009
, “
The Ice Formation Method: A Natural Approach to Optimize Turbomachinery Components
,”
Int. J. Des. Nat.
,
3
, pp.
259
272
.10.2495/D&NE-V3-N4-259-272
15.
Namgoong
,
H.
,
Son
,
C.
, and
Ireland
,
P.
,
2008
, “
U-Bend Shaped Turbine Blade Cooling Passage Optimization
,”
AIAA
Paper No. ISSMO 2008-592610.2514/6.2008-5926.
16.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Van der Wielen
,
T.
, and
Arts
,
T.
,
2011
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part I—Numerical Method
,”
ASME
Paper No. GT2011-46541.10.1115/GT2011-46541
17.
Wereley
,
T.
,
Gui
,
L.
, and
Meinhart
,
C. D.
,
2002
, “
Advanced Algorithms for Microscale Particle Image Velocimetry
,”
AIAA J.
,
40
, pp.
1047
1055
.10.2514/2.1786
18.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
, pp.
51
60
.10.1007/s003480070007
19.
Ireland
,
P. T.
, and
Jones
,
T. C.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
, pp.
969
986
.10.1088/0957-0233/11/7/313
20.
Kline
,
S. J.
, and
McClintok
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. J.
,
75
, pp.
3
8
.
21.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1986
,
Random Data: Analysis and Measurements Procedures
,
Wiley
,
New York
.
22.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
, p.
021017
.10.1115/1.4000550
23.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
,
Rau
,
G.
, and
Acton
,
P.
,
1992
, “
Aero-Thermal Investigation of the Flow Developing in a 180 Degree Turn Channel
,”
Proceedings of the International Symposium on Heat Transfer in Turbomachinery
, Athens, August 24–28.
24.
Gallo
,
M.
, and
Astarita
,
T.
,
2010
, “
3D Reconstruction of the Flow and Vortical Field in a Rotating Sharp ‘U’ Turn Channel
,”
Exp. Fluids
,
48
, pp.
967
982
.10.1007/s00348-009-0776-5
25.
Dafalias
,
Y. F.
, and
Younis
,
B. A.
,
2009
, “
An Objective Model for the Fluctuating Pressure Strain-Rate Correlations
,”
J. Eng. Mech.
,
135
, pp.
1006
1014
.10.1061/(ASCE)EM.1943-7889.0000014
26.
Soranna
,
F.
,
Chow
,
Y.-C.
,
Uzol
,
O.
, and
Katz
,
J.
,
2006
, “
The Effect of Inlet Guide Vanes Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
,
128
, pp.
82
95
.10.1115/1.2098755
27.
Bradshaw
,
P.
,
1973
, “
Effects of Streamline Curvature on Turbulent Flows
,” AGARDograph No. 169.
28.
Luo
,
J.
, and
Razinsky
,
E.
,
2009
, “
Analysis of Turbulent Flow in 180 Deg Turning Ducts With and Without Guide Vanes
,”
ASME J. Turbomach.
,
131
, p.
021011
.10.1115/1.2987239
29.
Cooper
,
B. G.
,
1991
, “
Cooled Aerofoil Blade
,” U.S. Patent No. 5,073,086.
30.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1973
, “
The Calculation of Low-Reynolds Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1119
1130
.10.1016/0017-9310(73)90125-7
You do not currently have access to this content.