Two deterministic mistuning models utilizing component mode synthesis methods are used in a Monte Carlo simulation to generate mistuned response distributions for a geometrically perturbed integrally bladed rotor. The first method, a frequency-perturbation approach with a nominal mode approximation used widely in academia and industry, assumes airfoil geometric perturbations alter only the corresponding modal stiffnesses while its mode shapes remain unaffected. The mistuned response is then predicted by a summation of the nominal modes. The second method, a geometric method utilizing non-nominal modes, makes no simplifying assumptions of the dynamic response due to airfoil geometric perturbations, but requires recalculation of each airfoil eigen-problem. A comparison of the statistical moments of the mistuned response distributions and prediction error is given for three different frequency ranges and engine order excitations. Further, the response distributions are used for a variety of design and testing scenarios to highlight impacts of the frequency-based approach inaccuracy. Results indicate the frequency-based method typically provides conservative response levels.

References

1.
Dye
,
R. C. F.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Power
,
91
(
3
), pp.
182
188
.10.1115/1.3574726
2.
El-Bayoumy
,
L. E.
and
Srinivasan
,
A. V.
,
1975
, “
Influence of Mistuning on Rotor-Blade Vibrations
,”
AIAA J.
,
13
(
4
), pp.
460
464
.10.2514/3.49731
3.
Ewins
,
D. J.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
(
1
), pp.
65
79
.10.1016/0022-460X(69)90264-8
4.
Ewins
,
D.
,
1970
, “
A Study of Resonance Coincidence in Bladed Discs
,”
J. Mech. Eng. Sci.
,
12
(
5
), pp.
305
312
.10.1243/JMES_JOUR_1970_012_055_02
5.
Wagner
,
J. T.
,
1967
, “
Coupling of Turbomachine Blade Vibrations Through the Rotor
,”
ASME J. Eng. Power
,
89
(
4
), pp.
502
512
.10.1115/1.3616718
6.
Bladh
,
R.,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1999
, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds
,”
ASME J. Eng. Gas Turbines and Power
,
121
(
3
), pp.
515
522
.10.1115/1.2818503
7.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
8.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
100
108
.10.1115/1.1338948
9.
Castanier
,
M. P.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vibr. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
10.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
11.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
12.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
13.
Lin
,
C.-C.
, and
Mignolet
,
M. P.
,
1997
, “
An Adaptive Perturbation Scheme for the Analysis of Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
153
160
.10.1115/1.2815540
14.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Reduced Order Approach for the Vibration of Mistuned Bladed Disk Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
161
167
.10.1115/1.2815542
15.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
16.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference
, Norfolk, VA, April 7–10, Paper No.
AIAA
2003-1545. 10.2514/6.2003-1545
17.
Lim
,
S.-H.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2004
, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes
,”
45th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference
, Palm Springs, CA, April 19–22, Paper No.
AIAA
2004-1686. 10.2514/6.2004-1686
18.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
19.
Brown
,
J. M.
,
2009
, “
Reduced Order Modeling Methods for Turbomachinery Design
,”
Ph.D. thesis
,
Wright State University
, Dayton, OH.
20.
Sinha
,
A.
,
2007
, “Reduced-Order Model of a Bladed Rotor With Geometric Mistuning,” ASME Turbo Expo 2007: Power for Land, Sea and Air, Dayton, OH, May 14–17.
21.
Bartsch
,
T. M.
,
2000
, “High Cycle Fatigue Science and Technology Program,” Technical Report No. AFRL-PR-WP-TR-2000-2004, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH.
22.
Cowles
,
B. A.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industrial Perspective
,”
Int. J. Fracture
,
80
, pp.
147
163
.10.1007/BF00012667
23.
Nicholas
,
T.
,
1999
, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fatigue
,
21
, pp.
221
231
.10.1016/S0142-1123(99)00074-2
24.
Bah
,
M. T.
,
Nair
,
P. B.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
,
2002
, “
Forced Response Statistics of Mistuned Bladed Disks: A Stochastic Reduced Basis Approach
,”
J. Sound Vib.
,
263
(
2
), pp.
377
397
.10.1016/S0022-460X(02)01058-1
25.
Bladh
,
R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
311
324
.10.1115/1.1447236
26.
Capiez-Lernout
,
E.
, and
Soize
,
C.
,
2004
, “
Nonparametric Modeling of Random Uncertainties for Dynamic Response of Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
610
618
.10.1115/1.1760527
27.
Cha
,
D.
, and
Sinha
,
A.
,
1999
, “
Statistics of Response of a Mistuned Bladed Disk Assembly Subjected to White Noise and Narrow Band Excitation
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
710
717
.10.1115/1.2818531
28.
Choi
,
B.-K.
,
Lentz
,
J.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Optimization of the Intentional Mistuning Patterns for the Reduction of the Forced Response Effects of Unintentional Mistuning: Formulation and Assessment
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
131
140
.10.1115/1.1498270
29.
Lee
,
S.-Y.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2005
, “
Assessment of Probabilistic Methods for Mistuned Bladed Disk Vibration
,”
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Austin, TX, April 18–21,
AIAA
Paper No. AIAA 2005-1990. 10.2514/6.2005-1990
30.
Li
,
J.
,
Castanier
,
M. P.
,
Pierre
,
M. P.
, and
Ceccio
,
S. L.
,
2006
, “
Experimental Monte Carlo Mistuning Assessment of Bladed Disk Vibration Using Forcing Variations
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Newport, RI, May 1–4, Paper No.
AIAA
2006-1964. 10.2514/6.2006-1964
31.
Mignolet
,
M. P.
, and
Lin
,
C.-C.
,
1993
, “
The Combined Closed Form Perturbation Approach to the Analysis of Mistuned Bladed Disks
,”
ASME J. Turbomach.
,
115
(
4
), pp.
771
780
.10.1115/1.2929315
32.
Mignolet
,
M. P.
,
Lin
,
C.-C.
, and
LaBorde
,
B. H.
,
2001
, “
A Novel Limit Distribution for the Analysis of Randomly Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
388
394
.10.1115/1.1339001
33.
Scarselli
,
G.
and
Lecce
,
L.
,
2004
, “
Non Deterministic Approaches for the Evaluation of the Mistune Effects on the Rotor Dynamics
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Palm Springs, CA, April 19–22, Paper No.
AIAA
2004-1748. 10.2514/6.2004-1748
34.
Sinha
,
A.
,
1986
, “
Calculating the Statistics of Forced Response of a Mistuned Bladed Disk Assembly
,”
AIAA J.
,
24
(
11
), pp.
1797
1801
.10.2514/3.9526
35.
Sinha
,
A.
,
2005
, “Statistics of the Peak Maximum Amplitude of the Forced Response of a Mistuned Bladed Disk,” ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, June 6–9,
ASME
Paper No. GT2005-69070. 10.1115/GT2005-69070
36.
Sinha
,
A.
,
2006
, “
Computation of the Statistics of Forced Response of a Mistuned Bladed Disk Assembly Via Polynomial Chaos
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
449
457
.10.1115/1.2215620
37.
Durham
,
W. C.
,
Bampton
,
M. C. C.
, and
Craig
,
R.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
38.
Brown
,
J. M.
, and
Grandhi
,
R. V.
,
2008
, “
Reduced-Order Model Development for Airfoil Forced Response
,”
Int. J. Rotating Mach.
,
2008
, p.
387828
. 10.1155/2008/387828
39.
Woehr
,
D. A.
, and
Manwaring
,
S. R.
,
1994
, “Augmented Damping of Low Aspect Ratio Fans (ADLARF),” Technical Report No. WL-TR-95-2008, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH.
You do not currently have access to this content.