Since Oehlert et al. (2007, “Exploratory Experiments on Machined Riblets for 2-D Compressor Blades,” Proceedings of International Mechanical Engineering Conference and Exposition 2007, Seattle, WA, IMECE2007-43457), significant improvements in the manufacturing processes of riblets by laser structuring and grinding have been achieved. In the present study, strategies for manufacturing small-scale grooves with a spacing smaller than 40 μm by metal bonded grinding wheels are presented. For the laser-structuring process, significant improvements of the production time by applying diffractive optical elements were achieved. Finally, strategies for evaluating the geometrical quality of the small-scale surface structures are shown and results obtained with two different measuring techniques (SEM and confocal microscope) are compared with each other. The aerodynamic impact of the different manufacturing processes is investigated based upon skin friction reduction data obtained on flat plates as well as the profile-loss reduction of riblet-structured compressor blades measured in a linear cascade wind tunnel. Numerical simulations with MISES embedded in a Monte Carlo simulation (MCS) were performed in order to calculate the profile-loss reduction of a blade structured by grinding to define further improvements of the riblet-geometry. A numerical as well as experimental study quantifying the relevant geometrical parameters indicate how further improvements from the present 4% reduction in skin friction can be achieved by an additional decrease of the riblet tip diameter and a more trapezoidal shape of the groove in order to realize the 8% potential reduction.

References

1.
Gümmer
,
V.
, (
2005
), “
Pfeilung und V-Stellung zur Beeinflussung der Dreidimensionalen Strömung in Leiträdern Transsonischer Axialverdichter
, “
Fortschritt-Berichte VDI Reihe 7 Nr. 384
,
VDI Verlag
,
Düsseldorf
.
2.
Reif
,
W.-E.
,
1985
, Squamation and Ecology of Sharks (Courier Forschungsinstitut Senckenberg), Vol. 78,
Schweizerbart Science Publishers
,
Stuttgart, Germany
.
3.
Walsh
,
M. J.
,
1983
, “
Turbulent Boundary Layer Drag Reduction Using Riblets
,” AIAA Paper No. 1982-0169.
4.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
van der Hoeven
,
J. G. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.10.1017/S0022112096004673
5.
Oehlert
,
K.
, and
Seume
,
J.
,
2006
, “
Exploratory Experiments on Machined Riblets on Compressor Blades
,”
Proc. of 2nd Joint U.S.-European Fluids Engineering Division Summer Meeting
,
Miami, FL
, July 17–20,
ASME
Paper No. FEDSM2006-98093, pp.
415
424
.10.1115/FEDSM2006-98093
6.
Oehlert
,
K.
Seume
,
J.
Siegel
,
F.
Ostendorf
,
A.
Wang
,
B.
;
Denkena
,
B.
Vynnyk
,
T.
Reithmeier
,
E.
Hage
,
W.
Knobloch
,
K.
, and
Meyer
,
R.
,
2007
, “
Exploratory Experiments on Machined Riblets for 2-D Compressor Blades
,”
Proceedings of International Mechanical Engineering Conference and Exposition (IMECE2007)
,
Seattle, WA
, November 11–15,
ASME
Paper No. IMECE2007-43457. pp.
25
39.
10.1115/IMECE2007-43457
7.
Denkena
,
B.
,
Koehler
,
J.
, and
Wang
,
B.
,
2010
, “
Manufacturing of Functional Riblet Structures by Profile Grinding
,”
CIRP J. Man. Sci. Tech
,
3
, pp.
14
26
.10.1016/j.cirpj.2010.08.001
8.
Siegel
,
F.
,
Klug
,
U.
, and
Kling
,
R.
,
2009
, “
Extensive Micro-Structuring of Metals Using Picosecond Pulses—Ablation Behavior and Industrial Relevance
,”
J. Laser Micro. Nanoeng.
,
4
, pp.
104
110
.10.2961/jlmn.2009.02.0006
9.
Lietmeyer
,
C.
,
Oehlert
,
K.
, and
Seume
J. R.
,
2011
, “
Optimal Application of Riblets on Compressor Blades and Their Contamination Behaviour
,”
Proceedings of ASME Turbo Expo 2011
,
Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-46855, pp.
443
455
.10.1115/GT2011-46855
10.
Klocke
,
F.
,
Klink
,
A.
, and
Schneider
,
U
,
2007
, “
Electrochemical Oxidation Analysis for Dressing Bronze-Bonded Diamond Grinding Wheels
,”
Prod. Engineer.
,
1
(
2
), pp.
141
148
.10.1007/s11740-007-0008-x
11.
Denkena
,
B.
,
Reichstein
,
M.
, and
Hahmann
,
D.
,
2006
, “
Electro Contact Discharge Dressing for Micro-Grinding
,”
Proceedings of the 6th euspen International Conference
,
Baden, Austria
, May 28–June 1, Paper No. P7.22, pp.
92
95
.
12.
Zaeh
,
M. F.
,
Brinksmeier
,
E.
,
Heinzel
,
C.
,
Huntemann
,
J. W.
, and
Föckerer
,
T
,
2009
, “
Experimental and Numerical Identification of Process Parameters of Grind-Hardening and Resulting Part Distortions
,”
Prod. Engineer.
,
3
(
3
), pp.
271
279
.10.1007/s11740-009-0163-3
13.
Golub
,
M.
,
2004
, “
Laser Beam Splitting by Diffractive Optics
,”
Opt. Photonics News
,
15
(
2
), pp.
36
41
.10.1364/OPN.15.2.000036
14.
Siegel
,
F.
,
2011
, “
Abtragen metallischer Werkstoffe mit Pikosekunden-Laserpulsen für Anwendungen in der Strömungsmechanik
,”
dissertation
,
Berichte aus dem LZH
, Band 02/2011.
15.
Wojakowski
,
B.
,
Klug
,
U.
, and
Kling
,
R.
,
2011
, “
Large-Area Production of Dynamically Scaled Micrustructures Using Diffractive Optical Elements
,”
Proceedings of International Congress on Applications of Lasers and Electro-Optics (ICALEO) 2011
,
Orlando, FL
, October 23–27, Paper No. M603.
16.
Vynnyk
,
T.
,
2010
, “
REM-Topografiemessungen an Mikro- und Nanostrukturierten Oberflächen
,”
dissertation
,
Leibniz Universität Hannover
,
Hannover, Germany
.
17.
Hage
,
W.
, and
Bechert
,
D. W.
,
2001
, “
Rib Tip Sharpness: A Key Issue for Riblet Application
,” Interner Bericht, DLR-IB 92517-01/B7.
18.
Drela
,
M.
, and
Giles
,
M. B.
,
1987
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.10.2514/3.9789
19.
Lietmeyer
,
C.
,
Chahine
,
C.
, and
Seume
,
J. R.
,
2011
, “
Numerical Calculation of the Riblet-Effect on Compressor Blades and Validation With Experimental Results
,”
Proceedings of International Gas Turbine Congress (IGTC 2011)
,
Osaka, Japan
, November 13–18, Paper No. IGTC2011-0106.
You do not currently have access to this content.