An experimental and numerical study of the flow field and the downstream film cooling performance of cylindrical and diffuser shaped cooling holes is presented. The measurements were conducted on a flat plate with a single cooling hole with coolant ejected from a plenum. The flow field was investigated by means of 3D-PIV as well as 3D-LDV measurements, the downstream film cooling effectiveness by means of infrared thermography. Cylindrical and diffuser holes without lateral inclination have been examined, varying blowing ratio and density ratio as well as freestream turbulence levels. 3D-CFD simulations have been performed and validated along with the experimental efforts. The results, presented in terms of contour plots of the three normalized velocity components as well as adiabatic film cooling effectiveness, clearly show the flow structure of the film cooling jets and the differences brought about by the variation of hole geometry and flow parameters. The quantitative agreement between experiment and CFD was reasonable, with better agreement for cylindrical holes than for diffuser holes.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
J. Eng. Power
,
90
, pp.
384
393
. 10.1115/1.3609223
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
,
1970
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Israel J. Technol.
,
8
, pp.
145
154
.
3.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.10.1016/0017-9310(74)90007-6
4.
Foster
,
N. W.
, and
Lampard
,
D.
,
1980
, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
J. Eng. Power
,
102
, pp.
584
588
.10.1115/1.3230306
5.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High Resolution Measurements of Local Heat Transfer Coefficients by Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
, pp.
749
755
.10.1115/1.1387245
6.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
High Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
, pp.
758
765
.10.1115/1.1371778
7.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
807
813
.10.1115/1.2840938
8.
Ligrani
,
P.
,
Wigle
,
J. M.
, and
Jackson
,
S.
,
1994
. “
Film-Cooling From Holes With Compound Angle Orientations: Part 2—Results Downstream of a Single Row of Holes With 6d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
, pp.
353
362
.10.1115/1.2911407
9.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2000
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME Paper No. 2000-GT-248
.
10.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1998
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME Paper No. 98-GT-10
.
11.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
, pp.
791
798
.10.1115/1.2841791
12.
Bunker
,
R.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
, pp.
441
453
.10.1115/1.1860562
13.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
42nd ASME International Gas Turbine and Aeroengine Congress
, Orlando, FL, June 2–5.
14.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Effect of Geometry Variations on the Cooling Perfomance of Fan-Shaped Cooling Holes
,”
ASME
Paper No. GT2008-51038.10.1115/GT2008-51038
15.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
, pp.
718
725
.10.1115/1.2019315
16.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2010
, “
Film Cooling Performance of Sharp-Edged Diffuser Holes With Lateral Inclination
,”
ASME
Paper No. GT2010-23090.10.1115/GT2010-23090
17.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
, pp.
139
145
.10.1115/1.3262248
18.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
. “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
327
336
.10.1115/1.2841410
19.
Lee
,
S. W.
,
Lee
,
J. S.
, and
Ro
,
S. T.
,
1994
, “
Experimental Study on the Flow Characteristics of Streamwise Inclined Jets in Crossflow on Flat Plate
,”
ASME J. Turbomach.
,
116
, pp.
97
105
.10.1115/1.2928283
20.
Lee
,
S. W.
,
Kim
,
Y. B.
, and
Lee
,
J. S.
,
1997
, “
Flow Characteristics and Aerodynamic Losses of Film-Cooling Jets With Compound Angle Orientations
,”
ASME J. Turbomach.
,
119
, pp.
310
319
.10.1115/1.2841114
21.
Jessen
,
W.
,
Schröder
,
W.
, and
Klaas
,
M.
,
2007
, “
Evolution of Jets Effusing From Inclined Holes Into Crossflow
,”
Int. J. Heat Fluid Flow
,
28
, pp.
1312
1326
.10.1016/j.ijheatfluidflow.2007.06.010
22.
Jessen
,
W.
,
Konopka
,
M.
, and
Schröder
,
W.
,
2010
, “
Particle-Image Velocimetry Measurements of Film Cooling in an Adverse Pressure Gradient Flow
,”
ASME
Paper No. GT2010-22411.10.1115/GT2010-22411
23.
Kercher
,
D.
,
1998
, “
A Film-Cooling CFD Bibliography: 1971-1996
,”
Int. J. Rotating Mach.
,
4
, pp.
61
72
.10.1155/S1023621X98000062
24.
Leylek
,
J.
, and
Zerkle
,
R.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
, pp.
358
368
.10.1115/1.2929422
25.
Walters
,
D.
, and
Leylek
,
J.
,
1997
, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield
,”
ASME J. Turbomach.
,
119
(
4
), pp.
777
785
.10.1115/1.2841188
26.
Walters
,
D.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
108
.10.1115/1.555433
27.
Hyams
,
D.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
, pp.
122
132
.10.1115/1.555435
28.
Bacci
,
A.
, and
Facchini
,
B.
,
2007
, “
Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows
,”
ASME
Paper No. GT2007-27182.10.1115/GT2007-27182
29.
Shih
,
T. I.-P.
, and
Na
,
S.
,
2007
, “
Momentum-Preserving Shaped Holes for Film Cooling
,”
ASME
Paper No. GT-2007-27600.10.1115/GT2007-27600
30.
Na
,
S.
, and
Shih
,
T. I.-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
April
), pp.
464
471
.10.1115/1.2709965
31.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2009
, “
Optimization of a Fan-Shaped Hole for Film Cooling Using a Surrogate Model
,”
ASME
Paper No. GT2009-59520.10.1115/GT2009-59520
32.
Kissel
,
H. P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Ungewickell
,
A.
,
2007
, “
An Experimental and Numerical Investigation of the Effect of Cooling Channel Crossflow on Film Cooling Performance
,”
ASME
Paper No. GT2007-27102.10.1115/GT2007-27102
33.
Colban
,
W.
,
Thole
,
K.
, and
Händler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
, pp.
23
31
.10.1115/1.2370747
34.
Goormans-Francke
,
C.
,
Carabin
,
G.
, and
Hirsch
,
C.
,
2008
, “
Mesh Generation for Conjugate Heat Transfer Analysis of a Cooled High Pressure Turbine Stage
,”
ASME
Paper No. GT2008-50660.10.1115/GT2008-50660
35.
Miller
,
K. L.
, and
Crawford
,
M. E.
,
1984
, “
Numerical Simulation of Single, Double, and Multiple Row Film Cooling Effectiveness and Heat Transfer
,”
ASME Paper No. 84-GT-112
.
36.
Heidmann
,
J. D.
, and
Hunter
,
S. D.
,
2001
, ”
Technical Report No. NASA/TM-2001-210817
.
37.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2005
, “
Modeling of Film Cooling: Part II—Model for Use in 3D CFD
,”
ASME
Paper No. GT2005-68780.10.1115/GT2005-68780
38.
Tartinville
,
B.
, and
Hirsch
,
C.
,
2008
, “
Modelling of Film Cooling for Turbine Blade Design
,”
ASME
Paper No. GT2008-50316.10.1115/GT2008-50316
39.
auf dem Kampe
,
T. G.
, and
Völker
,
S.
,
2011
, “
A Model for Cylindrical Hole Film Cooling—Part II: Model Formulation, Implementation and Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061011
.10.1115/1.4006307
40.
auf dem Kampe
,
T. G.
, and
Völker
,
S.
,
2010
, “
A Correlation-Based Methodology to Predict the Flow Structure of Flows Emanating From Cylindrical Holes With Application to Film Cooling
,”
Heat Trans. Res.
,
41
(
6
), pp.
687
699
.10.1615/HeatTransRes.v41.i6.70
41.
auf dem Kampe
,
T. G.
,
Zehe
,
F. N.
, and
Völker
,
S.
,
2011
, “
A Model for Cylindrical Hole Film Cooling—Part I: A Correlation for Jet-Flow With Application to Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
) p.
061010
.10.1115/1.4006306
42.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
,
McGraw-Hill Higher Education
,
New York
.
43.
Martiny
,
M.
,
Schiele
,
R.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
In Situ Calibration for Quantitative Infrared Thermography
,”
Eurotherm S.
,
50
, pp.
3
8
.
44.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
, pp.
1
9
.10.1088/0957-0233/11/7/311
45.
Ochs
,
M.
,
Horbach
,
T.
,
Schulz
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2009
, “
A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments
,”
Meas. Sci. Technol.
,
20
, pp.
9
17
.10.1088/0957-0233/20/7/075103
46.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
47.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
48.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
, pp.
620
627
.10.1115/1.3450752
49.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
, pp.
686
698
.10.1115/1.1504443
You do not currently have access to this content.