An investigation of the sensitivity of a geometrical scaling technique on the blade forcing prediction and mode excitability has been performed. A stage of a transonic compressor is employed as a test object. A scaling ratio is defined, which indicates the amount of scaling from the original geometry. Different scaling ratios are selected and 3D Navier–Stokes unsteady calculations completed for each scaled configuration. A full-annulus calculation (nonscaled) is performed serving as reference. The quantity of interest is the generalized force, which gives a direct indication of the mode excitability. In order to capture both up- and downstream excitation effects, the mode excitability has been assessed on both rotor and stator blades. The results show that the first harmonic excitation can be predicted well for both up- and downstream excitations using moderate amounts of scaling. On the other hand, the predictions of second harmonic quantities do show a higher sensitivity to scaling for the investigated test case.

1.
El-Aini
,
Y.
,
deLaneuville
,
R.
,
Stoner
,
A.
, and
Capece
,
V.
, 1997, “
High Cycle Fatigue of Turbomachinery Components—Industry Perspective
,”
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Seattle.
2.
Jöcker
,
M.
, 2002, “
Mode Shape Sensitivity of the High Pressure Turbine Rotor Excitation Due to Upstream Stators
,” ASME Paper No. GT-2002-30452.
3.
Vahdati
,
M.
,
Bread
,
C.
,
Simpson
,
G.
, and
Imregun
,
M.
, 2008, “
Forced Response Assessment Using Modal Force Based Indicator Functions
,” ASME Paper No. GT2008-50306.
4.
Laumert
,
B.
,
Mårtensson
,
H.
, and
Fransson
,
T. H.
, 2002, “
Investigation of Unsteady Aerodynamic Blade Excitation Mechanisms in a Transonic Turbine Stage—Part I: Phenomenological Identification and Classification
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
410
418
.
5.
Laumert
,
B.
,
Mårtensson
,
H.
, and
Fransson
,
T. H.
, 2002, “
Investigation of Unsteady Aerodynamic Blade Excitation Mechanisms in a Transonic Turbine Stage—Part II: Analytical Description and Quantification
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
419
428
.
6.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Imregun
,
M.
, and
Simpson
,
G.
, 2007, “
Multibladerow Forced Response Modeling in Axial-Flow Core Compressors
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
412
420
.
7.
Erdos
,
J. I.
, and
Alzner
,
E.
, 1977, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
0001-1452,
15
, pp.
1559
1568
.
8.
He
,
L.
, 1992, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
0001-1452,
30
, pp.
2730
2735
.
9.
Olausson
,
M.
,
Eriksson
,
L.
, and
Baralon
,
S.
, 2007, “
Nonlinear Rotor Wake/Stator Interaction Computations
,” Paper No. ISABE-2007-1307.
10.
Olausson
,
M.
,
Eriksson
,
L.
, and
Baralon
,
S.
, 2007, “
Evaluation of Nonlinear Rotor Wake/Stator Interaction by Using Time Domain Chorochronic Solver
,”
Proceedings of the Eighth International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows
, Lyon.
11.
Giles
,
M. B.
, 1990, “
Stator/Rotor Interaction in a Transonic Turbine
,”
J. Propul. Power
0748-4658,
6
, pp.
621
627
.
12.
Laumert
,
B.
,
Mårtensson
,
H.
, and
Fransson
,
T. H.
, 2002, “
Simulation of Rotor/Stator Interaction With a 4D Finite Volume Method
,” ASME Paper No. GT-2002-30601.
13.
Rai
,
M.
, and
Madavan
,
N. K.
, 1990, “
Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor-Stator Interaction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
377
396
.
14.
Clark
,
J. P.
,
Stetson
,
G. M.
,
Magge
,
S. S.
,
Ni
,
R. H.
,
Haldemann
,
C. W.
, and
Dunn
,
M. G.
, 2000, “
The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and 1/2 Stage Transonic Turbine and a Comparison With Experimental Results
,” ASME Paper No. 2000-GT-0446.
15.
Schmitz
,
M. B.
,
Schäfer
,
O.
,
Szwedowicz
,
J.
,
Secall-Wimmel
,
T.
, and
Sommer
,
T. P.
, 2006, “
Axial Turbine Blade Vibrations Induced by the Stator Flow. Comparison of Calculations and Experiment
,”
Turbomachines: Aeroelasticity, Aeroacoustics, and Unsteady Aerodynamics
,
V. A.
Skibin
,
V. E.
Saren
,
N. M.
Savin
, and
S. M.
Frolov
, eds.,
Torus Press Ltd.
,
Moscow
.
16.
Eriksson
,
L. E.
, 1993, “
A Third Order Accurate Upwind-Biased Finite-Volume Scheme for Unsteady Compressible Viscous Flow
,” Volvo Aero Corporation Technical Report No. 9370-154.
17.
Mårtensson
,
H.
,
Burman
,
J.
, and
Johansson
,
U.
, 2007, “
Design of the High Pressure Ratio Transonic 112 Stage Fan Demonstrator Hulda
,” ASME Paper No. 2007-GT-27793.
18.
Mårtensson
,
H.
,
Burman
,
J.
, and
Johansson
,
U.
, 2007, “
Design and Performance of a Front Stage and for a High Pressure Ratio Fan Demonstrator
,” Paper No. ISABE-2007-1137.
19.
Mayorca
,
M.
,
Vogt
,
D.
, and
Fransson
,
T.
, 2008, “
Effect of Scaling of Blade Row Sectors on the Aerodynamic Forcing
,” Report No. KTH-HPT-11/08.
20.
Lundh
,
C.
,
Mårtensson
,
H.
, and
Johansson
,
U.
, 2006, “
Forcing Analysis of the FoT25 Hulda Compressor
,” Volvo Aero Corporation Technical Report No. 10033820.
21.
Von Hoyningen-Huene
,
M.
,
Frank
,
W.
, and
Jung
,
A. R.
, 2000, “
Three-Dimensional Time-Resolved Flow Field in the First and Last Turbine Stage of a Heavy Duty Gas Turbine, Part II: Interpretation of Blade Pressure Fluctuations
,” ASME Paper No. 2000-GT-0439.
You do not currently have access to this content.