The aerodynamics of a fully cooled axial single stage high-pressure turbine operating at design corrected conditions of corrected speed, flow function, and stage pressure ratio has been investigated. This paper focuses on flow field predictions obtained from the viewpoint of a turbine designer using the computational fluid dynamics (CFD) codes Numeca’s FINE/TURBO and the code TURBO. The predictions were all performed with only knowledge of the stage operating conditions, but without knowledge of the surface pressure measurements. Predictions were obtained with and without distributed cooling flow simulation. The FINE/TURBO model was run in 3-D viscous steady and time-accurate modes; the TURBO model was used to provide only 3-D viscous time-accurate results. Both FINE/TURBO and TURBO utilized phase-lagged boundary conditions to simplify the time-accurate model and to significantly reduce the computing time and resources. The time-accurate surface pressure loadings and steady state predictions are compared to measurements for the blade, vane, and shroud as time-averaged, time series, and power spectrum data. The measurements were obtained using The Ohio State University Gas Turbine Laboratory Turbine Test Facility. The time-average and steady comparisons of measurements and predictions are presented for 50% span on the vane and blade. Comparisons are also presented for several locations along the blade to illustrate local differences in the CFD behavior. The comparisons for the shroud are made across the blade passage at axial blade chord locations corresponding to the pressure transducer locations. The power spectrum decompositions of individual transducers (based on the fast Fourier transform (FFT)) are also included to lend insight into the unsteady nature of the flow. The comparisons show that both computational tools are capable of providing reasonable aerodynamic predictions for the vane, blade, and stationary shroud. The CFD model predictions show the encouraging trend of improved matching to the experimental data with increasing model fidelity from mass averaged to distributed cooling flow inclusion and as the codes change from steady to time-accurate modes.

1.
Aube
,
M.
, and
Hirsch
,
C.
, 2001 “
Numerical Investigation of a 1-1∕2 Axial Turbine Stage at Quasi-Steady and Fully Unsteady Conditions
,” ASME Paper GT 2001-0309.
2.
Green
,
B. R.
,
Barter
,
J. W.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2005, “
Time-Averaged and Time-Accurate Aero-Dynamics for the Recessed Tip Cavity of a High-Pressure Turbine Blade and the Outer Stationary Shroud: Comparison of Computational and Experimental Results
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
736
746
.
3.
Barter
,
J. W.
,
Vitt
,
P. H.
, and
Chen
,
J. P.
, 2000, “
Interaction Effects in a Transonic Turbine Stage
,” ASME Paper No. 2000-GT-0376.
4.
Haldeman
,
C. M.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part I: Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021015
.
5.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2006, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021016
.
6.
Garg
,
V. J.
, 1999, “
Heat Transfer on a Film-Cooled Rotating Blade
,” ASME Paper No. 99-GT-44.
7.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
637
686
.
8.
Giles
,
M. B.
, 1988, “
UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
,” MIT Gas Turbine Laboratory Report No. 195.
9.
Giles
,
M. B.
, 1988, “
Calculation of Unsteady Wake Rotor Interaction
,”
AIAA J.
0001-1452,
4
(
4
), pp.
356
362
.
10.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
, 1988, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,” Paper No. 88-GT-171.
11.
Abhari
,
R. S.
, and
Giles
,
M. B.
, 1997, “
A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping
,”
AIAA J.
0001-1452,
119
, pp.
77
81
.
12.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
, 1994, “
Vane-Blade Interaction in a Transonic Turbine: Part II—Heat Transfer
,”
AIAA J.
0001-1452,
10
(
3
), pp.
312
317
.
13.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
, 1994, “
Vane-Blade Interaction in a Transonic Turbine: Part I—Aerodynamics
,”
AIAA J.
0001-1452,
10
(
3
), pp.
305
311
.
14.
Dunn
,
M. G.
,
Bennett
,
W. A.
,
Delaney
,
R. A.
, and
Rao
,
K. V.
, 1992, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
91
99
.
15.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
123
133
.
16.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,”
ASME Turbo Expo
,
Barcelona, Spain
, May 8–11.
17.
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Abhari
,
R. S.
,
Venable
,
B. L.
, and
Delaney
,
R. A.
, 1999, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics. Part II: Time-Resolved Data and Analysis
,
ASME J. Turbomach.
0889-504X,
121
, pp.
673
682
.
18.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
, and
Abhari
,
R. S.
, 1999, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics. Part I: Time-Averaged Data and Analysis
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
663
672
.
19.
Hoyningen-Huene
,
M. V.
, and
Jung
,
A. R.
, 2000, “
Comparison of Different Acceleration Techniques and Methods for Periodic Boundary Treatment in Unsteady Turbine Stage Flow Simulation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
234
246
.
20.
Mildner
,
F.
, and
Gallus
,
H. E.
, 1998, “
An Analysis Method for Multistage Transonic Turbines With Coolant Mass Flow Addition
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
744
752
.
21.
Denos
,
R.
,
Fidalgo
,
V. J.
, and
Adami
,
P.
, 2006, “
Transport of Unsteadiness Across the Rotor of a Transonic Turbine Stage
,” ASME Paper No. GT2006-9046.
22.
Denos
,
R.
,
Paniagua
,
G.
,
Yasa
,
T.
, and
Fortugno
,
E.
, 2006, “
Determination of the Efficiency of a Cooled HP Turbine in a Compression Tube Facility
,” ASME Paper No. GT2006-90460.
23.
Keogh
,
R. C.
,
Guenette
,
G. R.
, and
Sommer
,
T. P.
, 2000, “
Aerodynamic Performance Measurements of a Fully-Scaled Turbine in a Short Duration Facility
,” ASME Paper No. 2000-GT-486.
24.
Keogh
,
R. C.
,
Guenette
,
G. R.
,
Spadaccini
,
C. M.
,
Sommer
,
T. P.
, and
Florjancic
,
S.
, 2002, “
Aerodynamic Performance Measurements of a Film-Cooled Turbine Stage—Experimental Results
,” ASME Paper No. GT-2002-30344.
25.
Leylek
,
J. H.
, and
Zerkel
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
358
386
.
26.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2005, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,” ASME Paper No. GT2005-68783.
27.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
, 2005, “
Modeling of Film Cooling—Part II: Model for Use in 3D CFD
,” ASME Paper No. GT2005-68780.
28.
Hildebrandt
,
T.
,
Ganzert
,
W.
, and
Fottner
,
L.
, 2000, “
Systematic Experimental and Numerical Investigation on the Aerothermodynamics of a Film Cooled Turbine Cascade With Variation of the Cooling Hole Shape
,” ASME Paper No. GT2000-0298.
29.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
, 2006, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,” ASME Paper No. GT-2006-90210.
30.
Hildebrandt
,
T.
, and
Ettrich
,
J.
, 2003, “
Unsteady 3D Navier–Stokes Calculation of a Film-Cooled Turbine Stage With Discrete Cooling Holes
,”
ISUAAT 2003
,
Durham, NC
, Sept. 8–11.
31.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2006, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part I: Experimental Approach
,”
ASME Turbo Expo
,
Barcelona, Spain
, May 8–11.
32.
Haldeman
,
C. W.
, 2003, “
An Experimental Investigation of Clocking Effects on Turbine Aerodynamics Using a Modern 3-D One and One-Half Stage High Pressure Turbine for Code Verification and Flow Model Development
,” MS thesis, Ohio State University, Columbus, OH.
33.
Chen
,
J. P.
,
Grosh
,
A. R.
,
Sreenivas
,
K.
, and
Whitfield
,
D. L.
, 1997, “
Comparison of Computations Using Navier–Stokes Equations in Rotating and Fixed Coordinates for Flow Through Turbomachinery
,” Paper No. AIAA-97-0878.
34.
Whitfield
,
D. L.
,
Janus
,
J. M.
, and
Simpson
,
L. B.
, 1988, “
Implicit Finite Volume High Resolution Wave-Split Scheme for Solving the Unsteady Three Dimensional Euler and Navier–Stokes Equations on Stationary or Dynamic Grids
,” Paper No. MSSU-EIRS-ASE-88-2.
35.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
, pp.
227
237
.
36.
Chen
,
J. P.
,
Celestina
,
M. L.
, and
Adamczyk
,
J. J.
, 1994, “
A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages
,” ASME Paper No. 94-GT-151.
37.
Zante
,
D. E. V.
,
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Chris
,
R.
, 2005, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates From Time-Accurate, Multi-Stage, Navier–Stokes Simulations
,”
ASME Turbo Expo 2005: Power for Land, Sea and Air
,
Reno-Tahoe, NV
, June 6–9.
38.
Chen
,
J. P.
, and
Barter
,
J. W.
, 1998, “
Comparison of Time-Accurate Calculations for the Unsteady Interaction in a Turbomachinery Stage
,” AIAA Paper No. 98-3292.
You do not currently have access to this content.