This paper presents two low-cost alternatives for turbine blade surface heat transfer and fluid dynamics measurements. These models embody careful compromises between typical academic and full-scale turbomachinery experiments and represent a comprehensive strategy to develop experiments that can directly test shortcomings in current turbomachinery simulation tools. A full contextual history of the wide range of approaches to simulate turbine flow conditions is presented, along with a discussion of their deficiencies. Both models are simplifications of a linear cascade: the current standard for simulating two-dimensional turbine blade geometries. A single passage model is presented as a curved duct consisting of two half-blade geometries, carefully designed inlet and exit walls and inlet suction. This facility was determined to be best suited for heat transfer measurements where minimal surface conduction losses are necessary to allow accurate numerical model replication. A double passage model is defined as a single blade with two precisely designed outer walls, which is most appropriate for flow measurements. The design procedures necessary to achieve a desired flow condition are discussed.

1.
Garg
,
V.
, 1999, “
Heat Transfer on a Film-Cooled Rotating Blade Using Different Turbulence Models
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
789
802
.
2.
Haldeman
,
C.
, and
Dunn
,
M.
, 2004, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
126
(
1
), pp.
101
109
.
3.
Dunn
,
M.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
637
686
.
4.
Atassi
,
H.
,
Ali
,
A.
,
Atassi
,
O.
, and
Vinogradov
,
I.
, 2004, “
Scattering of Incident Disturbances by an Annular Cascade in a Swirling Flow
,”
J. Fluid Mech.
0022-1120,
499
, pp.
111
138
.
5.
Schulz
,
H.
, and
Gallus
,
H.
, 1988, “
Experimental Investigation of the Three-Dimensional Flow in an Annular Cascade
,”
ASME J. Turbomach.
0889-504X,
110
(
4
), pp.
467
478
.
6.
Wisler
,
D.
,
Bauer
,
R.
, and
Okiishi
,
T.
, 1987, “
Secondary Flow Turbulent Diffusion and Mixing in an Axial Flow Compressor
,”
ASME J. Turbomach.
0889-504X,
109
(
4
), pp.
455
482
.
7.
Blair
,
M.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
1
13
.
8.
Abhari
,
R.
, and
Epstein
,
A.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
63
70
.
9.
Dunn
,
M.
, and
Stoddard
,
F.
, 1979, “
Measurement of Heat-Transfer Rate to a Gas Turbine Stator
,”
ASME J. Eng. Power
0022-0825,
101
(
2
), pp.
275
280
.
10.
Dunn
,
M.
, 1986, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time Averaged Results
,”
ASME J. Turbomach.
0889-504X,
108
(
3
), pp.
90
97
.
11.
Dunn
,
M.
, and
Chupp
,
R.
, 1988, “
Time-Averaged Heat-Flux Distributions and Comparisons With Prediction for the Teledyne 702 HP Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
110
(
1
), pp.
51
56
.
12.
Dunn
,
M.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
, 1994, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
14
22
.
13.
Chana
,
K. S.
, and
Jones
,
T. V.
, 2003, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
513
520
.
14.
Dunn
,
M.
, 1986, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time Averaged Results
,”
ASME J. Turbomach.
0889-504X,
108
(
3
), pp.
90
97
.
15.
Epstein
,
A.
,
Guenette
,
G.
,
Norton
,
R.
, and
Yuzhang
,
C.
, 1986, “
High-Frequency Response Heat Flux Gauge
,”
Rev. Sci. Instrum.
0034-6748,
57
(
4
), pp.
639
649
.
16.
Mukerji
,
D.
,
Eaton
,
J. K.
,
Moffat
,
R. J.
, and
Elkins
,
C. J.
, 1999, “
A 2-D Numerical Study of the Heat-Island Effect for Button-Type Heat Flux Gages
,”
Proceedings of the 5th ASME∕JSME Joint Thermal Engineering Conference
, San Diego, CA, March 15–19, Paper No. AJTE99∕6186.
17.
Dunn
,
M.
,
Kim.
,
J.
, and
Rae
,
W.
, 1997, “
Investigation of the Heat Island Effect for Heat-Flux Measurements in Short Duration Facilities
,”
ASME J. Turbomach.
0889-504X,
119
(
4
), pp.
753
760
.
18.
Moffat
,
R. J.
,
Eaton
,
J. K.
, and
Mukerji
,
D.
, 2000, “
General Method for Calculating the Heat Island Correction and Uncertainties for Button Gauges
,”
Meas. Sci. Technol.
0957-0233,
11
(
7
), pp.
920
932
.
19.
Diller
,
T.
, 1993, “
Advances in Heat Flux Measurements
,”
Adv. Heat Transfer
0065-2717,
23
, pp.
279
368
.
20.
Peabody
,
H. L.
, and
Diller
,
T. E.
, 1998, “
Evaluation of an Insert Heat Flux Gage in a Transonic Turbine Cascade
,”
Proceedings of the ASME Heat Transfer Division 5
, Anaheim, CA, Nov. 15–20, Vols.
361–365
, pp.
625
630
.
21.
Dunn
,
M.
, 2000, private communication.
22.
Martinez-Botas
,
R.
,
Lock
,
G.
, and
Jones
,
T.
, 1995, “
Heat Transfer Measurements in an Annular Cascade of Transonic Gas Turbine Blades Using the Transient Liquid Crystal Technique
,”
ASME J. Turbomach.
0889-504X,
117
(
3
), pp.
425
431
.
23.
Baughn
,
J.
, 1995, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
0142-727X,
16
(
5
), pp.
365
375
.
24.
Guenette
,
G.
,
Epstein
,
A.
,
Giles
,
M.
,
Haimes
,
R.
, and
Norton
,
R.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
102
, pp.
1
7
.
25.
Armstrong
,
W.
, 1955, “
The Secondary Flow in a Cascade of Turbine Blades
,” ARC Report and Memorandum.
26.
Giel
,
P.
,
Thurman
,
D.
,
Van Fossen
,
G.
,
Hippensteele
,
S.
, and
Boyle
,
R.
, 1996, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,” ASME Paper No. 96-GT-180.
27.
Giel
,
P.
,
Van Fossen
,
G.
,
Boyle
,
R.
,
Thurmann
,
D.
, and
Civinskas
,
K.
, 1999, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,” ASME Paper No. 99-GT-125.
28.
Camci
,
C.
, and
Arts
,
T.
, 1991, “
Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film-Cooled Transonic Test Blade
,”
ASME J. Turbomach.
0889-504X,
113
(
3
), pp.
493
501
.
29.
Yamamoto
,
A.
,
Kondo
,
Y.
, and
Murao
,
R.
, 1991, “
Cooling-Air Injection Into Secondary Flow and Loss Fields Within a Linear Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
375
383
.
30.
Hobson
,
G.
,
Caruso
,
T. M.
, and
Carlson
,
J. R.
, 2003, “
Three-Component LDV Measurements in the Wake of a Compressor Cascade With Flow Separation
,”
Proceedings of the ASME International Gas Turbine Institute
, Atlanta, GA, June 16–19,
6
(A), pp.
91
103
.
31.
Gottlich
,
E.
,
Lang
,
H.
,
Sanz
,
W.
, and
Woisetschlager
,
J.
, 2002, “
Experimental Investigation of an Innovative Cooling System (ICS) for High Temperature Transonic Turbine Stages
,”
Proceedings of the ASME International Gas Turbine Institute
, Amsterdam, The Netherlands, June 3–6,
5
(A), pp.
159
167
.
32.
Drost
,
U.
, and
Bölcs
,
A.
, 1999, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distribution on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
0889-504X,
121
(
2
), pp.
233
242
.
33.
Sieverding
,
C. H.
,
Arts
,
T.
,
Denos
,
R.
, and
Martelli
,
F.
, 1996, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
118
(
2
), pp.
291
300
.
34.
Giel
,
P.
,
Boyle
,
R.
, and
Bunker
,
R.
, 2004, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
126
(
1
), pp.
110
121
.
35.
Abuaf
,
N.
,
Bunker
,
D.
, and
Lee
,
C.
, 1997, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
302
309
.
36.
Goldstein
,
R.
, and
Spores
,
R.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
(
4
), pp.
862
869
.
37.
Radomsky
,
R.
, and
Thole
,
K.
, 2000, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
255
262
.
38.
Priddy
,
W.
, and
Bayley
,
F.
, 1988, “
Turbulence Measurements in Turbine Blade Passages and Implications for Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
110
(
1
), pp.
73
79
.
39.
Blair
,
M.
, 1974, “
Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
(
4
), pp.
524
529
.
40.
Bailey
,
D.
, 1980, “
Study of Mean and Turbulent-Velocity Fields in a Large-Scale Turbine-Vane Passage
,”
ASME J. Eng. Power
0022-0825,
102
(
1
), pp.
88
97
.
41.
Chung
,
J.
, and
Simon
,
T.
, 1991, “
Three-Dimensional Flow Near the Blade∕Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” ASME Paper No. 90-WA∕HT4-4.
42.
Chung
,
J.
,
Simon
,
T.
, and
Buddhavarapu
,
J.
, 1991, “
Three-Dimensional Flow Near the Blade∕Endwall Junction of a Gas Turbine: Visualization in a Large-Scale Cascade Simulator
,” ASME Paper No. 91-GT-45.
43.
Buck
,
F.
, and
Prakash
,
C.
, 1995, “
Design and Evaluation of a Single Passage Test Model to Obtain Turbine Airfoil Film Cooling Effectiveness Data
,” ASME Paper No. 95-GT-19.
44.
Kodzwa
,
P.
, and
Eaton
,
J.
, 2005, “
Measurements of Film Cooling Performance in a Transonic Single Passage Model
,” Technical Report No. TF 93, Stanford University, Stanford CA, available at http://www.stanford. edu/group/fpc/Publications/TF.htmlhttp://www.stanford. edu/group/fpc/Publications/TF.html.
45.
Laskowski
,
G.
, 2004, “
Inverse Design of a Turbine Cascade Passage and DNS of a Stationary and Rotating Serpentine Passage
,” Ph.D. thesis, Stanford University, Stanford.
46.
Vicharelli
,
A.
, and
Eaton
,
J.
, 2006, “
Turbulence Measurements in a Transonic Two-Passage Turbine Cascade
,”
Exp. Fluids
0723-4864,
40
(
6
), pp.
897
917
.
47.
Medic
,
G.
, and
Durbin
,
P.
, 2002, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
187
192
.
48.
CD Adapco Group, 2001, STAR-CD Version 3.15, Methodology, Computational Dynamics, Melville, NY.
49.
Buck
,
F.
, 2000, private communication.
50.
Haldeman
,
C.
,
Dunn
,
M.
,
Barter
,
J.
,
Green
,
B.
, and
Bergholz
,
R.
, 2005, “
Aerodynamic and Heat-Flux Measurements With Predictions on a Modern One and One-Half State High Pressure Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
522
531
.
51.
Chen
,
Y.
, and
Kim
,
S.
, 1987, “
Computation of Turbulent Flows Using an Extended k‐ε Turbulence Closure Model
,” NASA Report No. CR179204.
52.
Wu
,
X.
, 2000, private communication.
53.
Laskowski
,
G.
,
Vicharelli
,
A.
,
Medic
,
G.
,
Elkins
,
C.
,
Eaton
,
J.
, and
Durbin
,
P.
, 2005, “
Inverse Design of and Experimental Measurements in a Double Passage Transonic Cascade Model
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
619
625
.
54.
Langston
,
L.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
(
4
), pp.
866
874
.
55.
Athans
,
R.
, 2000, private communication.
You do not currently have access to this content.