The advancement of turbine cooling has allowed engine design to exceed normal material temperature limits, but it has introduced complexities that have accentuated the thermal issues greatly. Cooled component design has consistently trended in the direction of higher heat loads, higher through-wall thermal gradients, and higher in-plane thermal gradients. The present discussion seeks to identify ten major thermal issues, or opportunities, that remain for the turbine hot gas path (HGP) today. These thermal challenges are commonly known in their broadest forms, but some tend to be little discussed in a direct manner relevant to gas turbines. These include uniformity of internal cooling, ultimate film cooling, microcooling, reduced incident heat flux, secondary flows as prime cooling, contoured gas paths, thermal stress reduction, controlled cooling, low emission combustor-turbine systems, and regenerative cooling. Evolutionary or revolutionary advancements concerning these issues will ultimately be required in realizable engineering forms for gas turbines to breakthrough to new levels of performance. Herein lies the challenge to researchers and designers. It is the intention of this summary to provide a concise review of these issues, and some of the recent solution directions, as an initial guide and stimulation to further research.

1.
Zhang
,
N.
,
Yang
,
W. J.
, and
Lee
,
C. P.
, 1993, “
Heat Transfer and Friction Loss Performance in Flow Networks With Multiple Intersections
,”
Exp. Heat Transfer
0891-6152,
6
, pp.
243
257
.
2.
Gillespie
,
D.
,
Wang
,
Z.
,
Ireland
,
P.
, and
Kohler
,
S. T.
, 1996, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
92
99
.
3.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C. P.
, and
Stevens
,
C. W.
, 2004, “
In-Wall Network (Mesh) Cooling Augmentation for Turbine Airfoils
,” IGTI Turbo Expo, Vienna, ASME Paper No. GT2004-54260.
4.
Bunker
,
R. S.
, 2005, “
A Review of Turbine Shaped Film Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
5.
Moser
,
S.
,
Ivanisin
,
M.
,
Woisetschlaeger
,
J.
, and
Jericha
,
H.
, 2000, “
Novel Blade Cooling Engineering Solution
,” IGTI Turbo Expo, Munich, ASME Paper No. 2000-GT-242.
6.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2001, “
A Converging Slot-Hole Film Cooling Geometry—Part 1: Low-Speed Flat Plate Heat Transfer and Loss
,” IGTI Turbo Expo, New Orleans, Paper No. 2001-GT-0126.
7.
Fric
,
T. F.
, and
Campbell
,
R. P.
, 2002, “
Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream Which Flows Through a Substrate, and Related Articles of Manufacture
,” U.S. Patent No. 6,383,602.
8.
Bunker
,
R. S.
, 2002, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” IGTI Turbo Expo, Amsterdam, ASME Paper No. GT-2002-30178.
9.
Nasir
,
H.
,
Acharya
,
S.
, and
Ekkad
,
S.
, 2001, “
Film Cooling From a Single Row of Cylindrical Angled Holes With Triangular Tabs Having Different Orientations
,” IGTI Turbo Expo, New Orleans, ASME Paper No. 2001-GT-0124.
10.
Sweeney
,
P. C.
, and
Rhodes
,
J. P.
, 1999, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
170
177
.
11.
Nakamata
,
C.
,
Okita
,
Y.
,
Matsuno
,
S.
,
Mimura
,
F.
,
Matsushita
,
M.
,
Yamana
,
T.
, and
Yoshida
,
T.
, 2005, “
Spatial Arrangement Dependence of Cooling Performance of an Integrated Impipngement and Pin Fin Cooling Configuration
,” IGTI Turbo Expo, Reno-Tahoe, ASME Paper No. GT2005-68348.
12.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
, 1999, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
553
557
.
13.
Battisti
,
L.
, 2002, “
Boundary Layer Control of Aerodynamic Airfoils
,” U.S. Patent No. 6,488,238.
14.
Wolf
,
J.
, and
Moskowitz
,
S.
, 1983, “
Development of the Transpiration Air-Cooled Turbine for High-Temperature Dirty Gas Streams
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
821
825
.
15.
Novikov
,
A. S.
,
Meshkov
,
S. A.
, and
Sabaev
,
G. V.
, 1988, “
Creation of High Efficiency Turbine Cooled Blades With Structural Electron Beam Coatings
,”
Electron Beam and Gas-Thermal Coatings
,
Paton IEW
,
Kiev
, pp.
87
96
.
16.
Bunker
,
R. S.
, 1997, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,” 1997 International Gas Turbine Conference, Orlando, ASME Paper No. 97-GT-135.
17.
Bons
,
J. P.
, 2002, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
632
644
.
18.
Bunker
,
R. S.
, 2003, “
The Effect of Thermal Barrier Coating Roughness Magnitude on Heat Transfer With and Without Flowpath Surface Steps
,” International Mechanical Engineering Conference, Washington DC, ASME Paper No. IMECE2003-41073.
19.
Morant GmbH, Ceral 3450sc product brochure, Grassau, Germany.
20.
Stowell
,
W. R.
,
Nagaraj
,
B. A.
,
Lee
,
C. P.
,
Ackerman
,
J. F.
, and
Israel
,
R. S.
, 2002, “
Enhanced Coating System for Turbine Airfoil Applications
,” U.S. Patent No. 6,394,755.
21.
Hsing
,
Y. C.
,
Chyu
,
M. K.
, and
Bunker
,
R. S.
, 1998, “
Measurements of the Cooling Performance of Gap Leakage on a Misaligned Component Interface Using a Thermographic Phosphor Fluorescence Imaging System
,” IGTI Conference, Stockholm, ASME Paper No. 98-GT-132.
22.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” IGTI Turbo Expo, Reno-Tahoe, ASME Paper No. GT2005-68340.
23.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Roughness and a Mid-Passage Gap on Endwall Film Cooling
,” IGTI Turbo Expo, Reno-Tahoe, ASME Paper No. GT2005-68900.
24.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
25.
Lethander
,
A. T.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
, 2003, “
Optimizing the Vane-Endwall Junction to Reduce Adiabatic Wall Temperatures in a Turbine Vane Passage
,” IGTI Turbo Expo, Atlanta, ASME Paper No. GT2003–38939.
26.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
, 2001, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric Endwalls—Part II: Experimental Validation
,” IGTI Turbo Expo, New Orleans, ASME Paper No. 2001-GT-0505.
27.
Maciejewski
,
P. K.
, and
Rivir
,
R. B.
, 1994, “
Effects of Surface Riblets and Free-Stream Turbulence on Heat Transfer in a Linear Turbine Cascade
,” IGTI Turbo Expo, The Hague, ASME Paper No. 94-GT-245.
28.
Bunker
,
R. S.
, 2001, “
Airfoil With Reduced Heat Load
,” U.S. Patent No. 6,183,197.
29.
LaFleur
,
R. S.
,
Whitten
,
T. S.
, and
Araujo
,
J. A.
, 1999, “
Second Vane Endwall Heat Transfer Reduction by Iceform Contouring
,” IGTI Turbo Expo, Indianapolis, ASME Paper No. 99-GT-422.
30.
Sellers
,
R. R.
,
Soechting
,
F. O.
,
Huber
,
F. W.
, and
Auxier
,
T. A.
, 1998, “
Cooled Blades for a Gas Turbine Engine
,” U.S. Patent No. 5,720,431.
31.
Dailey
,
G. M.
,
McCall
,
R. A.
, and
Evans
,
P. A.
, 2000, “
Cooled Aerofoil for a Gas Turbine Engine
,” European Patent Application EP-1-022-432-A2.
32.
Pidcock
,
A.
,
Cooper
,
S. M.
, and
Fry
,
P.
, 1995, “
Removable Combustor Liner for Gas Turbine Engine Combustor
,” U.S. Patent No. 5,435,139.
33.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
, 1994, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
886
895
.
34.
Bons
,
J. P.
,
Rivir
,
R. B.
,
MacArthur
,
C. D.
, and
Pestian
,
D. J.
, 1995, “
The Effect of Unsteadiness on Film Cooling Effectiveness
,” 33rd Aerospace Sciences Meeting, Reno, AIAA Paper No. 95-0306.
35.
Kirk
,
D. R.
,
Guenette
,
G. R.
,
Lukachko
,
S. P.
, and
Waitz
,
I. A.
, 2002, “
Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors Part 2: Near Wall Reaction Effects on Film-Cooling Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
751
759
.
36.
Roquemore
,
W. M.
,
Shouse
,
D.
,
Burrus
,
D.
,
Johnson
,
A.
,
Cooper
,
C.
,
Duncan
,
B.
,
Hsu
,
K. Y.
,
Katta
,
V. R.
,
Sturgess
,
G. J.
, and
Vihinen
,
I.
, 2001, “
Trapped Vortex Combustor Concept for Gas Turbine Engines
,” 39th AIAA Aerospace Sciences Meeting, Reno, ASME Paper No. 2001-0483.
37.
Public reports for U.S. Dept. of Energy Contract No. DE-FC26-01NT41020.
38.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2002, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
994
1002
.
39.
Farmer
,
R.
, and
Fulton
,
K.
, 1995, “
Design 60% Net Efficiency in Frame 7∕9H Steam-Cooled CCGT
,”
Gas Turbine World
,
25
(
3
), pp.
12
20
.
40.
McQuiggan
,
G.
, and
Southall
,
L. R.
, 1998, “
An Evolutionary Approach to the Development of New Advanced Technology Gas Turbines
,” IGTI Turbo Expo, Stockholm, ASME Paper No. 98-GT-223.
41.
Coffinberry
,
G. A.
, and
Leonard
,
G. L.
, 1999, “
System and Method of Providing Clean Filtered Cooling Air to a Hot Portion of a Gas Turbine Engine
,” U.S. Patent No. US5918458.
42.
Coffinberry
,
G. A.
, 1995, “
Gas Turbine Engine Cooling System
,” U.S. Patent No. US5392614.
43.
Bunker
,
R. S.
, 1997, “
Closed-Circuit Air Cooled Turbine
,” U.S. Patent No. 5,611,197.
44.
Zuo
,
Z. J.
,
Faghri
,
A.
, and
Langston
,
L. S.
, 1997, “
A Parametric Study of Heat Pipe Turbine Vane Cooling
,” IGTI Turbo Expo Congress, Orlando, ASME Paper No. 97-GT-443.
45.
Ling
,
J.
,
Cao
,
Y.
,
Rivir
,
R. B.
, and
MacArthur
,
C. D.
, 2004, “
Analytical Investigations of Rotating Disks With and Without Incorporating Rotating Heat Pipes
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
680
683
.
46.
Kerrebrock
,
J. L.
, and
Stickler
,
D. B.
, 1998, “
Vaporization Cooling for Gas Turbines, the Return-Flow Cascade
,” IGTI Turbo Expo, Stockholm, ASME Paper No. 98-GT-177.
You do not currently have access to this content.