Abstract

Low wear resistance of AZ91 alloy is the main factor limiting its more common use in industrial applications. Therefore, the micro-arc oxidation (MAO) process is mostly applied to the alloy to improve its wear resistance at room temperature (RT). However, the effect of the MAO coating on the wear behavior at elevated temperatures was investigated in limited works. In this study, the MAO process was performed on an AZ91 alloy in single-phase (silicate-containing) and dual-phase (aluminate + phosphate containing) electrolytes, and its wear behavior was investigated at both RT and 200 °C compared to the bare alloy. The results showed that the wear resistance of the alloy could be significantly improved both at RT and 200 °C, and the silicate-based electrolyte provided a better wear resistance at both temperatures. The results also showed that the dominant wear mechanism was oxidation for the bare alloy, and brittle fracture for the MAO-treated alloys.

References

1.
Zafari
,
A.
,
Ghasemi
,
H. M.
, and
Mahmudi
,
R.
,
2012
, “
Tribological Behavior of AZ91D Magnesium Alloy at Elevated Temperatures
,”
Wear
,
292–293
, pp.
33
40
.
2.
Zhang
,
D.
,
Zhang
,
D.
,
Bu
,
F.
,
Li
,
X.
,
Guan
,
K.
,
Yang
,
Q.
,
Liu
,
S.
,
Liu
,
X.
, and
Meng
,
J.
,
2017
, “
Effects of Minor Sr Addition on the Microstructure, Mechanical Properties and Creep Behavior of High Pressure Die Casting AZ91-0.5RE Based Alloy
,”
Mater. Sci. Eng. A
,
693
, pp.
51
59
.
3.
Pai
,
B. C.
,
Pillai
,
U. T. S.
,
Manikandan
,
P.
, and
Srinivasan
,
A.
,
2012
, “
Modification of AZ91 Mg Alloys for High Temperature Applications
,”
Trans. Indian Inst. Met.
,
65
(
6
), pp.
601
606
.
4.
Guo
,
J.
,
Wang
,
L.
,
Liang
,
J.
,
Xue
,
Q.
, and
Yan
,
F.
,
2009
, “
Tribological Behavior of Plasma Electrolytic Oxidation Coating on Magnesium Alloy With Oil Lubrication at Elevated Temperatures
,”
J. Alloys Compd.
,
481
(
1–2
), pp.
903
909
.
5.
Luo
,
H.
,
Cai
,
Q.
,
He
,
J.
, and
Wei
,
B.
,
2009
, “
Preparation and Properties of Composite Ceramic Coating Containing Al2O3-ZrO2-Y2O3 on AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation
,”
Curr. Appl. Phys.
,
9
(
6
), pp.
1341
1346
.
6.
Daroonparvar
,
M.
,
Yajid
,
M. A. M.
,
Yusof
,
N. M.
,
Bakhsheshi-Rad
,
H. R.
,
Hamzah
,
E.
, and
Mardanikivi
,
T.
,
2015
, “
Deposition of Duplex MAO Layer/Nanostructured Titanium Dioxide Composite Coatings on Mg-1%Ca Alloy Using a Combined Technique of Air Plasma Spraying and Micro Arc Oxidation
,”
J. Alloys Compd.
,
649
, pp.
591
605
.
7.
Kossenko
,
A.
, and
Zinigrad
,
M.
,
2015
, “
A Universal Electrolyte for the Plasma Electrolytic Oxidation of Aluminum and Magnesium Alloys
,”
Mater. Des.
,
88
, pp.
302
309
.
8.
Dou
,
J.
,
Chen
,
Y.
,
Yu
,
H.
, and
Chen
,
C.
,
2017
, “
Research Status of Magnesium Alloys by Micro-Arc Oxidation: A Review
,”
Surf. Eng.
,
33
(
10
), pp.
731
738
.
9.
Wang
,
Y.-H
,
Liu
,
Z.-G
,
Ouyang
,
J.-H
,
Wang
,
Y.-M
, and
Zhou
,
Y.
,
2015
, “
Influence of Electrolyte Compositions on Structure and High-Temperature Oxidation Resistance of Microarc Oxidation Coatings Formed on Ti2AlNb Alloy
,”
J. Alloys Compd.
,
647
, pp.
431
437
.
10.
Ghasemi
,
A.
,
Raja
,
V. S.
,
Blawert
,
C.
,
Dietzel
,
W.
, and
Kainer
,
K. U.
,
2010
, “
The Role of Anions in the Formation and Corrosion Resistance of the Plasma Electrolytic Oxidation Coatings
,”
Surf. Coat. Technol.
,
204
(
9–10
), pp.
1469
1478
.
11.
Lu
,
S.
,
Wang
,
Z.-X
,
Chen
,
J.
, and
Zhou
,
X.-S
,
2011
, “
Optimization of Dual Electrolyte and Characteristic of Micro-Arc Oxidation Coating Fabricated on ZK60 Mg Alloy
,”
Trans. Nonferrous Met. Soc. China
,
21
(
4
), pp.
929
935
.
12.
An
,
L.
,
Ma
,
Y.
,
Liu
,
Y.
,
Sun
,
L.
,
Wang
,
S.
, and
Wang
,
Z.
,
2018
, “
Effects of Additives, Voltage and Their Interactions on PEO Coatings Formed on Magnesium Alloys
,”
Surf. Coat. Technol.
,
354
, pp.
226
235
.
13.
Barati Darband
,
G.
,
Aliofkhazraei
,
M.
,
Hamghalam
,
P.
, and
Valizade
,
N.
,
2017
, “
Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism, Properties and Applications
,”
J. Magnesium Alloys
,
5
(
1
), pp.
74
132
.
14.
Jin
,
F.
,
Chu
,
P. K.
,
Xu
,
G.
,
Zhao
,
J.
,
Tang
,
D.
, and
Tong
,
H.
,
2006
, “
Structure and Mechanical Properties of Magnesium Alloy Treated by Micro-Arc Discharge Oxidation Using Direct Current and High-Frequency Bipolar Pulsing Modes
,”
Mater. Sci. Eng. A
,
435–436
, pp.
123
126
.
15.
Zhang
,
F.
,
Yin
,
M.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of Micro-Arc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,”
ASME J. Trib.
,
144
(
4
), p.
041703
.
16.
Li
,
H.
,
Lu
,
S.
,
Qin
,
W.
,
Han
,
L.
, and
Wu
,
X.
,
2015
, “
Improving the Wear Properties of AZ31 Magnesium Alloy Under Vacuum Low-Temperature Condition by Plasma Electrolytic Oxidation Coating
,”
Acta Astronaut.
,
116
, pp.
126
131
.
17.
Demirci
,
E. E.
,
Arslan
,
E.
,
Ezirmik
,
K. V.
,
Baran
,
Ö.
,
Totik
,
Y.
, and
Efeoğlu
,
İ.
,
2013
, “
Investigation of Wear, Corrosion and Tribocorrosion Properties of AZ91 Mg Alloy Coated by Micro Arc Oxidation Process in the Different Electrolyte Solutions
,”
Thin Solid Films
,
528
, pp.
116
122
.
18.
Küçükosman
,
R.
,
Şüküroğlu
,
E. E.
,
Totik
,
Y.
, and
Şüküroğlu
,
S.
,
2021
, “
Investigation of Wear Behavior of Graphite Additive Composite Coatings Deposited by Micro Arc Oxidation-Hydrothermal Treatment on AZ91 Mg Alloy
,”
Surfaces Interfaces
,
22
, p.
100894
.
19.
Lu
,
X.
,
Blawert
,
C.
,
Huang
,
Y.
,
Ovri
,
H.
,
Zheludkevich
,
M. L.
, and
Kainer
,
K. U.
,
2016
, “
Plasma Electrolytic Oxidation Coatings on Mg Alloy With Addition of SiO2 Particles
,”
Electrochim. Acta
,
187
, pp.
20
33
.
20.
Wang
,
S. Q.
,
Yang
,
Z. R.
,
Zhao
,
Y. T.
, and
Wei
,
M. X.
,
2010
, “
Sliding Wear Characteristics of AZ91D Alloy at Ambient Temperatures of 25–200 °C
,”
Tribol. Lett.
,
38
(
1
), pp.
39
45
.
21.
Bhowmick
,
S.
,
Muhaffel
,
F.
,
Sun
,
G.
,
Cimenoglu
,
H.
, and
Alpas
,
A. T.
,
2020
, “
Surface & Coatings Technology Role of Counterfaces With DLC and N-Based Coatings on Frictional Behaviour of AZ31 Magnesium Alloy Subjected to Plasma Electrolytic Oxidation (PEO) Process
,”
Surf. Coat. Technol.
,
397
, p.
125997
.
22.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
23.
Tokariev
,
O.
,
Steinbrech
,
R. W
,
Schnetter
,
L
, and
Malzbender
,
J
,
2012
, “
Micro- and Macro-Mechanical Testing of Transparent MgAl2O4 Spinel
,”
J. Mater. Sci.
,
47
(
12
), pp.
4821
4826
.
24.
Dini
,
H.
,
2017
,
As-Cast AZ91D Magnesium Alloy Properties: Effects of Microstructure and Temperature
,
Jönköping University School of Engineering, Dissertation Series No. 30
,
Jönköping, Sweden
.
25.
Wang
,
R.
,
Li
,
D.
, and
Li
,
W.
,
2021
, “
Temperature Dependence of Hardness Prediction for High-Temperature Structural Ceramics and Their Composites
,”
Nanotechnol. Rev.
,
10
(
1
), pp.
586
595
.
26.
Presnall
,
D. C.
, and
Walter
,
M. J.
,
1993
, “
Melting of Forsterite, Mg2SiO4, From 9.7 to 16.5 GPa
,”
J. Geophys. Res.
,
98
(
B11
), pp.
19777
19783
.
27.
Ganesh
,
I.
,
2013
, “
A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications
,”
Int. Mater. Rev.
,
58
(
2
), pp.
63
112
.
28.
Ren
,
L.
,
Fan
,
L.
,
Zhou
,
M.
,
Guo
,
Y.
,
Zhang
,
Y.
,
Boehlert
,
C. J.
, and
Quan
,
G.
,
2018
, “
Magnesium Application in Railway Rolling Stocks: A New Challenge and Opportunity for Lightweighting
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
2
), pp.
81
88
.
29.
Mingo
,
B.
,
Arrabal
,
R.
,
Mohedano
,
M.
,
Pardo
,
A.
, and
Matykina
,
E.
,
2017
, “
Corrosion and Wear of PEO Coated AZ91/SiC Composites
,”
Surf. Coat. Technol.
,
309
, pp.
1023
1032
.
30.
Selvi
,
E.
,
Muhaffel
,
F.
,
Yürektürk
,
Y.
,
Vanlı
,
A. S.
, and
Baydoğan
,
M.
,
2022
, “
Influence of Electrolyte Compositions and Electrical Parameters on Thermal Properties of Micro-Arc Oxidized AZ91 Alloy
,”
J. Mater. Eng. Perform.
,
31
(
2
), pp.
1667
1678
.
31.
Li
,
Q.
,
Yang
,
W.
,
Liu
,
C.
,
Wang
,
D.
, and
Liang
,
J.
,
2017
, “
Correlations Between the Growth Mechanism and Properties of Micro-Arc Oxidation Coatings on Titanium Alloy: Effects of Electrolytes
,”
Surf. Coat. Technol.
,
316
, pp.
162
170
.
32.
Yu
,
T.
,
Chen
,
J.
,
Wen
,
Y.
, and
Deng
,
Q.
,
2021
, “
High Temperature Phase Stability and Wear Behavior of Laser Clad Ta Reinforced NiCrBSi Coating
,”
Appl. Surf. Sci.
,
547
, p.
149171
.
33.
An
,
J.
,
Zhao
,
W.
, and
Feng
,
C. Q.
,
2019
, “
Elevated-Temperature Wear Characteristics and Mild-Severe Wear Transition in the Mg–10.1Gd–1.4Y–0.4Zr Alloy
,”
ASME J. Trib.
,
141
(
12
), p.
121601
.
34.
Egorkin
,
V. S.
,
Gnedenkov
,
S. V.
,
Sinebryukhov
,
S. L.
,
Vyaliy
,
I. E.
,
Gnedenkov
,
A. S.
, and
Chizhikov
,
R. G.
,
2018
, “
Increasing Thickness and Protective Properties of PEO-Coatings on Aluminum Alloy
,”
Surf. Coat. Technol.
,
334
, pp.
29
42
.
35.
White
,
L.
,
Koo
,
Y.
,
Neralla
,
S.
,
Sankara
,
J.
, and
Yun
,
Y.
,
2016
, “
Enhanced Mechanical Properties and Increased Corrosion Resistance of a Biodegradable Magnesium Alloy by Plasma Electrolytic Oxidation (PEO)
,”
Mater. Sci. Eng. B
,
208
, pp.
39
46
.
36.
Beake
,
B. D.
,
2022
, “
The Influence of the H/E Ratio on Wear Resistance of Coating Systems – Insights From Small-Scale Testing
,”
Surf. Coat. Technol.
,
442
, p.
128272
.
37.
Pezzato
,
L.
,
Angelini
,
V.
,
Brunelli
,
K.
,
Martini
,
C.
, and
Dabalà
,
M.
,
2018
, “
Tribological and Corrosion Behavior of PEO Coatings With Graphite Nanoparticles on AZ91 and AZ80 Magnesium Alloys
,”
Trans. Nonferrous Met. Soc. China
,
28
(
2
), pp.
259
272
.
38.
Li
,
H.
,
Sun
,
Y.
, and
Zhang
,
J.
,
2015
, “
Effect of ZrO2 Particle on the Performance of Micro-Arc Oxidation Coatings on Ti6Al4V
,”
Appl. Surf. Sci.
,
342
, pp.
183
190
.
39.
Ebrahimi
,
M.
,
Zarei-Hanzaki
,
A.
,
Shafieizad
,
A. H.
,
Šlapáková
,
M.
, and
Teymoory
,
P.
,
2019
, “
High-Temperature Wear Mechanisms of a Severely Plastic Deformed Al/Mg2Si Composite
,”
ASME J. Trib.
,
141
(
3
), p.
031604
.
40.
Tajdeen
,
A.
,
Megalingam
,
A.
,
Prabhu
,
M. S.
, and
Khan
,
M. W.
,
2023
, “
Role of Tungsten Disulfide Particles on the Microstructure, Mechanical, and Tribological Behaviors of Friction Stir-Processed Magnesium-Based Composite
,”
ASME J. Trib.
,
145
(
1
), p.
014501
.
41.
Lee
,
J.-M.
,
Kang
,
S.-B.
, and
Han
,
J.
,
2008
, “
Dry Sliding Wear of MAO-Coated A356/20 vol% SiCp Composites in the Temperature Range 25–180 °C
,”
Wear
,
264
(
1–2
), pp.
75
85
.
42.
Raj
,
M. J. I.
,
Manisekar
,
K.
, and
Gupta
,
M.
,
2019
, “
Central Composite Experimental Design Applied to the Dry Sliding Wear Behavior of Mg/Mica Composites
,”
ASME J. Trib.
,
141
(
1
), p.
011603
.
You do not currently have access to this content.