Abstract

The objective of this investigation was to analytically investigate the performance of a spherical roller bearing (SRB) operating under various loading and speed combinations. In order to achieve the objective, a full six degrees-of-freedom SRB dynamic model was developed. The model was corroborated with results in the open literature. An adaptive slicing method was developed to optimize the accuracy and computational effort of the roller force, skew, and tilt calculations. A comprehensive roller–race contact analysis in terms of slip velocity and contact area was then carried out to identify how bearing load and inner race (IR) speed variations change slip velocity and skew at the roller–race contact. The results from this investigation demonstrate that roller skew increases with IR speed, while the roller tilt remains relatively constant. The IR speed and roller slip velocity correlate well, which causes the traction force to increase and therefore produce greater skew. Skew and tilt angles also increase with applied axial load. However, at a certain load, the skew angle begins to decrease.

References

1.
Jones
,
A. B.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
.
2.
Harris
,
T. A. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
New York
.
3.
Walters
,
C. T.
,
1971
, “
The Dynamics of Ball Bearings
,”
ASME J. Lubr. Technol.
,
93
(
1
), pp.
1
10
.
4.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer
,
New York
.
5.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
293
302
.
6.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part II: Cylindrical Roller Bearing Results
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
305
311
.
7.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
312
318
.
8.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part IV: Ball Bearing Results
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
319
326
.
9.
Stacke
,
L. E.
,
Fritzson
,
D.
, and
Nordling
,
P.
,
1999
, “
BEAST—A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
213
(
2
), pp.
63
71
.
10.
Saheta
,
V.
,
2001
,
“Dynamics of Rolling Element Bearings Using Discrete Element Method,” M.S. thesis, Purdue University, West Lafayette, IN
.
11.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
126
(
4
), pp.
681
689
.
12.
Kang
,
Y. S.
,
Evans
,
R. D.
, and
Doll
,
G. L.
,
2010
, “
Roller-Raceway Slip Simulations of Wind Turbine Gearbox Bearings Using Dynamic Bearing Model
,”
International Joint Tribology Conference
,
San Francisco, CA
,
Oct. 17–20
, pp.
407
409
.
13.
Pederson
,
B. M.
,
Sadeghi
,
F.
, and
Wassgren
,
C.
,
2006
, “The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings,” SAE Transactions, JSTOR, pp.
260
271
.
14.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2009
, “
A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
131
(
2
), p.
021102
.
15.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p.
041502
.
16.
Kellstrom
,
E. M.
,
1979
, “
Rolling Contact Guidance of Rollers in Spherical Roller Bearings
,”
ASME 79-LUB-23, ASME/ASLE Lubrication Conference
,
Dayton, OH
,
Oct. 16–18
.
17.
Kleckner
,
R. J.
, and
Pirvics
,
J.
,
1982
, “
Spherical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
104
(
1
), pp.
99
108
.
18.
Kleckner
,
R. J.
, and
Dyba
,
G.
,
1983
,
“High Speed Spherical Roller Bearing Analysis and Comparison with Experimental Performance,” NASA, Technical Report, pp. 239–252
.
19.
Krzemiński-Freda
,
H.
, and
Raczyński
,
A.
,
1984
, “
The Effect of the Working Surface Shape on the Power Loss in Spherical Roller Bearings
,”
Wear
,
96
(
1
), pp.
61
74
.
20.
Raczyński
,
A.
,
1992
, “
Effect of Working Surface Shape on Power Loss in Taper Roller Bearings
,”
Wear
,
152
(
1
), pp.
31
45
.
21.
Stacke
,
L. E.
, and
Fritzson
,
D.
,
2001
, “
Dynamic Behaviour of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng. Part J
,
215
(
6
), pp.
499
508
.
22.
Cao
,
M.
, and
Xiao
,
J.
,
2008
, “
A Comprehensive Dynamic Model of Double-Row Spherical Roller Bearing—Model Development and Case Studies on Surface Defects, Preloads, and Radial Clearance
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp.
467
489
.
23.
Fiedler
,
S.
,
Kiekbusch
,
T.
, and
Sauer
,
B.
,
2011
, “
Investigation of Inner Contact and Friction Conditions of a Spherical Roller Bearing Using Multi-Body Simulation
,”
Period. Polytech. Mech. Eng.
,
55
(
2
), pp.
79
84
.
24.
Ghalamchi
,
B.
,
Sopanen
,
J.
, and
Mikkola
,
A.
,
2016
, “
Modeling and Dynamic Analysis of Spherical Roller Bearing With Localized Defects: Analytical Formulation to Calculate Defect Depth and Stiffness
,”
Shock Vib.
,
2016
(
1
), p.
2106810
.
25.
Ghalamchi
,
B.
,
Sopanen
,
J.
, and
Mikkola
,
A.
,
2013
, “
Simple and Versatile Dynamic Model of Spherical Roller Bearing
,”
Int. J. Rotat. Mach.
,
2013
(
9
), pp.
1
13
.
26.
Truman
,
C. E.
,
Blake
,
J. J.
, and
Sackfield
,
A.
,
2001
, “
Analysis of a Self-Tracking Rolling Element Bearing
,”
ASME J. Tribol.
,
123
(
2
), pp.
243
247
.
27.
Zhang
,
C.
,
Gu
,
L.
,
Mao
,
Y.
, and
Wang
,
L.
,
2019
, “
Modeling the Frictional Torque of a Dry-Lubricated Tapered Roller Bearing Considering the Roller Skewing
,”
Friction
,
7
(
6
), pp.
551
563
.
28.
Savage
,
M.
, and
Loewenthal
,
S. H.
,
1982
, “
Kinematic Correction for Roller Skewing
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
175
184
.
29.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
1999
, “
A Study on Rolling Element Skew Measurement in a Tapered Roller Bearing With a Specialized Capacitance Probe
,”
ASME J. Tribol.
,
122
(
3
), pp.
534
538
.
30.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
1999
, “
On the Measurement of Skew of Tapered Roller Bearings
,”
Tribol. Lett.
,
6
(
3/4
), pp.
221
223
.
31.
Yang
,
Y.
,
Danyluk
,
S.
, and
Hoeprich
,
M.
,
2000
, “
Rolling Element Skew in Tapered Roller Bearings
,”
Tribol. Trans.
,
43
(
3
), pp.
564
568
.
32.
Nelias
,
D.
,
Bercea
,
I.
, and
Paleu
,
V.
,
2008
, “
Prediction of Roller Skewing in Tapered Roller Bearings
,”
Tribol. Trans.
,
51
(
2
), pp.
128
139
.
33.
Wu
,
Z. H.
,
Xu
,
Y. Q.
, and
Deng
,
S. E.
,
2018
, “
Analysis of Dynamic Characteristics of Grease-Lubricated Tapered Roller Bearings
,”
Shock Vib.
,
2018
, p.
7183042
.
34.
Majdoub
,
F.
, and
Mevel
,
B.
,
2019
, “
Kinematic Equilibrium of Rollers in Tapered Roller Bearings
,”
Tribol. Trans.
,
62
(
4
), pp.
567
579
.
35.
Majdoub
,
F.
,
Saunier
,
L.
,
Sidoroff-Coicaud
,
C.
, and
Mevel
,
B.
,
2020
, “
Experimental and Numerical Roller Skew in Tapered Roller Bearings
,”
Tribol. Int.
,
145
, p.
106142
.
36.
Harris
,
T. A.
,
Kotzalas
,
M. N.
, and
Yu
,
W. K.
,
1998
, “
On the Causes and Effects of Roller Skewing in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
41
(
4
), pp.
572
578
.
37.
Cretu
,
S.
,
2011
, “Machined Brass and Pressed Steel Bearing Cages: A Comparative Study,” RKB Technical Review.
38.
Hamrock
,
B. J.
,
Schmid
,
B. J.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
39.
Sun
,
Z.
, and
Hao
,
C.
,
2012
, “
Conformal Contact Problems of Ball-Socket and Ball
,”
Phys. Procedia
,
25
, pp.
209
214
.
40.
Fang
,
X.
,
Zhang
,
C.
,
Chen
,
X.
,
Wang
,
Y.
, and
Tan
,
Y.
,
2015
, “
A New Universal Approximate Model for Conformal Contact and Non-Conformal Contact of Spherical Surfaces
,”
Acta Mech.
,
226
(
6
), pp.
1657
1672
.
41.
Houpert
,
L.
,
2000
, “
An Engineering Approach to Hertzian Contact Elasticity—Part I
,”
ASME J. Tribol.
,
123
(
3
), pp.
582
588
.
42.
Houpert
,
L.
,
2000
, “
An Engineering Approach to Non-Hertzian Contact Elasticity—Part II
,”
ASME J. Tribol.
,
123
(
3
), pp.
589
594
.
43.
Heathcote
,
H. L.
,
1920
, “
The Ball Bearing: In the Making, Under Test and on Service
,”
Proc. Inst. Automob. Eng.
,
15
(
1
), pp.
569
702
.
44.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
45.
Halling
,
J.
,
1989
,
Principles of Tribology
,
Macmillan Education
,
London
.
46.
Gupta
,
P. K.
,
1975
, “
Transient Ball Motion and Skid in Ball Bearings
,”
ASME J. Lubr. Technol.
,
97
(
2
), pp.
261
269
.
47.
Gupta
,
P. K.
,
1975
, “
Generalized Dynamic Simulation of Skid in Ball Bearings
,”
J. Aircr.
,
12
(
4
), pp.
260
265
.
48.
Kragelsky
,
I. V.
,
1968
,
Friction and Wear
,
Elsevier
,
New York
.
49.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2017
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley & Sons
,
New York
.
50.
Houpert
,
L.
,
2009
, “
CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts
,”
Tribol. Trans.
,
53
(
1
), pp.
1
9
.
51.
Houpert
,
L.
,
2009
, “
CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part II: Description of the Numerical Tool and Its Outputs
,”
Tribol. Trans.
,
53
(
1
), pp.
10
21
.
52.
Houpert
,
L.
,
2010
, “
CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations. Part III: Experimental Validation
,”
Tribol. Trans.
,
53
(
6
), pp.
848
859
.
53.
Popov
,
H. P.
,
Popov
,
E. P.
,
Nagarajan
,
S.
, and
Lu
,
Z. A.
,
1976
,
Mechanics of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
54.
Wilmer
,
M. G.
,
2021
, “Timken Sponsorship Communication.”
55.
Stribeck
,
R.
,
1907
, “
Ball Bearings for Various Loads
,”
Trans. ASME
,
29
(
4
), pp.
420
463
.
You do not currently have access to this content.