Abstract

Wear phenomena at the nanoscale are essential for applications involving miniaturized specimens. Furthermore, stochastic nano-events affect in general tribological processes, eventually also at the macroscale. Hence, it is of fundamental importance to perform nanotests with materials—such as steel—which are widely used also at the macroscale. In this paper, we present the analysis of tribotests performed with self-mated 100Cr6 steel (AISI 52100) at the submicron scale by means of an atomic force microscope. To this aim, steel particles with micrometer size were glued to the cantilever as “colloidal particles”. The microscope was employed for wear generation, for the imaging of scars and colloidal particles, and for the determination of wear volumes of both specimens. The analysis is focused on wear volume and its dependence on normal force and total sliding distance. Nanotests are compared with previously presented macrotests, also performed with self-mated steel. Nanotests exhibit, compared with macrotests, a significantly larger scattering and poor repeatability. Especially the analysis of these features reveals that, with small forces (≤10 µN) and surfaces (≤2 µm2), the random number of asperities inside the contact surface plays a crucial role, by far more decisive than the normal force or the sliding distance. Moreover, in several cases, only few asperities (<10) are involved in the wear process. Such low numbers lead to a breakdown in the applicability of tribological laws (e.g., Archard's law) based on statistical methods and on average variables.

References

1.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
2.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
Wiley
,
New York, NY
.
3.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J.-F.
,
2016
, “
Critical Length Scale Controls Adhesive Wear Mechanisms
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
4.
Frérot
,
L.
,
Aghababaei
,
R.
, and
Molinari
,
J.-F.
,
2018
, “
A Mechanistic Understanding of the Wear Coefficient: From Single to Multiple Asperities Contact
,”
J. Mech. Phys. Solids
,
114
, pp.
172
184
.
5.
Brink
,
T.
,
Frérot
,
L.
, and
Molinari
,
J.-F.
,
2021
, “
A Parameter-Free Mechanistic Model of the Adhesive Wear Process of Rough Surfaces in Sliding Contact
,”
J. Mech. Phys. Solids
,
147
, p.
104238
.
6.
Vakis
,
A. I.
,
Yastrebov
,
V. A.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
, et al
,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
, pp.
169
199
.
7.
Bhushan
,
B.
,
2004
,
Springer Handbook of Nanotechnology
,
Springer
,
Berlin, Germany
.
8.
Cappella
,
B.
, and
Dietler
,
G.
,
1999
, “
Force-distance Curves by Atomic Force Microscopy
,”
Surf. Sci. Rep.
,
34
(
1–3
), pp.
1
104
.
9.
Butt
,
H.-J.
,
Cappella
,
B.
, and
Kappl
,
M.
,
2005
, “
Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications
,”
Surf. Sci. Rep.
,
59
(
1–6
), pp.
1
152
.
10.
Cappella
,
B.
,
2016
,
Mechanical Properties of Polymers Measured Through AFM Force ( Distance Curves)
,
Springer
,
Berlin, Germany
.
11.
Stan
,
G.
, and
King
,
S. W.
,
2020
, “
Atomic Force Microscopy for Nanoscale Mechanical Property Characterization
,”
Vac. Sci. Technol. B
,
38
(
6
), p.
060801
.
12.
Khurshudov
,
A.
, and
Kato
,
K.
,
1995
, “
Wear of the Atomic Force Microscope tip Under Light Load, Studied by Atomic Force Microscopy
,”
Ultramicroscopy
,
60
(
1
), pp.
11
16
.
13.
Khurshudov
,
A. G.
,
Kato
,
K.
, and
Koide
,
H.
,
1996
, “
Nano-Wear of the Diamond AFM Probing tip Under Scratching of Silicon, Studied by AFM
,”
Tribol. Lett.
,
2
(
4
), pp.
345
354
.
14.
Chung
,
K.-H.
, and
Kim
,
D.-E.
,
2003
, “
Fundamental Investigation of Micro Wear Rate Using an Atomic Force Microscope
,”
Tribol. Lett.
,
15
(
2
), pp.
135
144
.
15.
Chung
,
K.-H.
,
2014
, “
Wear Characteristics of Atomic Force Microscopy Tips: A Review
,”
Int. J. Precision Eng. Manuf.
,
15
(
10
), pp.
2219
2230
.
16.
Bhaskaran
,
H.
,
Gotsmann
,
B.
,
Sebastian
,
A.
,
Drechsler
,
U.
,
Lantz
,
M. A.
,
Despont
,
M.
,
Jaroenapibal
,
P.
,
Carpick
,
R. W.
,
Chen
,
Y.
, and
Sridharan
,
K.
,
2010
, “
Ultralow Nanoscale Wear Through Atom-by-Atom Attrition in Silicon-Containing Diamond-Like Carbon
,”
Nat. Nanotechnol.
,
5
(
3
), pp.
181
185
.
17.
Strahlendorff
,
T.
,
Dai
,
G.
,
Bergmann
,
D.
, and
Tutsch
,
R.
,
2019
, “
Tip Wear and tip Breakage in High-Speed Atomic Force Microscopes
,”
Ultramicroscopy
,
201
, pp.
28
37
.
18.
Carpick
,
R. W.
, and
Salmeron
,
M.
,
1997
, “
Scratching the Surface: Fundamental Investigations of Tribology With Atomic Force Microscopy
,”
Chem. Rev.
,
97
(
4
), pp.
1163
1194
.
19.
Tseng
,
A. A.
,
2010
, “
A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4246
4252
.
20.
Bennewitz
,
R.
, and
Dickinson
,
J. T.
,
2008
, “
Fundamental Studies of Nanometer-Scale Wear Mechanisms
,”
MRS Bull.
,
33
(
12
), pp.
1174
1180
.
21.
Colaço
,
R.
,
2009
, “
An AFM Study of Single-Contact Abrasive Wear: The Rabinowicz Wear Equation Revisited
,”
Wear
,
267
(
11
), pp.
1772
1776
.
22.
Celano
,
U.
,
Hsia
,
F. C.
,
Vanhaeren
,
D.
,
Paredis
,
K.
,
Nordling
,
T. E.
,
Buijnsters
,
J. G.
,
Hantschel
,
T.
, and
Vandervorst
,
W.
,
2018
, “
Mesoscopic Physical Removal of Material Using Sliding Nano-Diamond Contacts
,”
Sci. Rep.
,
8
(
1
), pp.
1
10
.
23.
Garabedian
,
N. T.
,
Bhattacharjee
,
A.
,
Webster
,
M. N.
,
Hunter
,
G. L.
,
Jacobs
,
P. W.
,
Konicek
,
A. R.
, and
Burris
,
D. L.
,
2019
, “
Quantifying, Locating, and Following Asperity-Scale Wear Processes Within Multiasperity Contacts
,”
Tribol. Lett.
,
67
(
3
), p.
89
.
24.
Walker
,
J.
,
Umer
,
J.
,
Mohammadpour
,
M.
,
Theodossiades
,
S.
,
Bewsher
,
S. R.
,
Offner
,
G.
,
Bansal
,
H.
,
Leighton
,
M.
,
Braunstingl
,
M.
, and
Flesch
,
H.-G.
,
2021
, “
Asperity Level Characterization of Abrasive Wear Using Atomic Force Microscopy
,”
Proc. R. Soc. A
,
477
(
2250
), p.
20210103
.
25.
Reichelt
,
M.
, and
Cappella
,
B.
,
2021
, “
Micro- and Nanowear of Self-Mated Steel Generated and Studied With an AFM at the Single Asperity Level
,”
Front. Mech. Eng.
,
7
, p.
722434
.
26.
Reichelt
,
M.
, and
Cappella
,
B.
,
2020
, “
Influence of Relative Humidity on Wear of Self-Mated 100Cr6 Steel
,”
Wear
,
450–451
, p.
203239
.
27.
Dongmo
,
L. S.
,
Villarrubia
,
J. S.
,
Jones
,
S. N.
,
Renegar
,
T. B.
,
Postek
,
M. T.
, and
Song
,
J. F.
,
2000
, “
Experimental Test of Blind tip Reconstruction for Scanning Probe Microscopy
,”
Ultramicroscopy
,
85
(
3
), pp.
141
153
.
28.
Villarrubia
,
J. S.
,
1997
, “
Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and tip Estimation
,”
J. Res. Natl. Stand. Technol.
,
102
(
4
), pp.
425
454
.
29.
Welsh
,
N. C.
,
1965
, “
The dry Wear of Steels I. The General Pattern of Behaviour
,”
Philos. Trans. R. Soc. Ser A
,
257
(
1077
), pp.
31
50
.
30.
Welsh
,
N. C.
,
1965
, “
The dry Wear of Steels: II. Interpretation and Special Features
,”
Philos. Trans. R. Soc. Ser A
,
257
(
1077
), pp.
51
70
.
31.
Klaffke
,
D.
,
1995
, “
On the Repeatability of Friction and Wear Results and on the Influence of Humidity in Oscillating Tests of Steel-Steel Pairings
,”
Wear
,
189
(
1–2
), pp.
117
121
.
32.
Wang
,
Y.
,
Lei
,
T. Q.
, and
Liu
,
J. J.
,
1999
, “
Tribo-Metallographic Behaviour of High Carbon Steels in Dry Sliding I. Wear Mechanisms and Their Transition
,”
Wear
,
231
(
1
), pp.
1
11
.
33.
Wang
,
Y.
,
Lei
,
T. Q.
, and
Liu
,
J. J.
,
1999
, “
Tribo-Metallographic Behavior of High Carbon Steels in Dry Sliding II. Microstructure and Wear
,”
Wear
,
231
(
1
), pp.
12
19
.
34.
Wei
,
M. X.
,
Wang
,
S. Q.
,
Wang
,
L.
, and
Cui
,
X. H.
,
2011
, “
Wear and Friction Characteristics of a Selected Stainless Steel
,”
Tribol. T.
,
54
(
6
), pp.
840
848
.
35.
Reichelt
,
M.
, and
Cappella
,
B.
,
2021
, “
Large Scale Multi-Parameter Analysis of Wear of Self-Mated 100Cr6 Steel—A Study of the Validity of Archard’s Law
,”
Tribol. Int.
,
159
, p.
106945
.
36.
Reichelt
,
M.
, and
Cappella
,
B.
,
2020
, “
Comparative Analysis of Error Sources in the Determination of Wear Volumes of Tribological Ball-on-Plane Tests
,”
Front. Mech. Eng.
,
6
, p.
25
.
37.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A.
, and
Tosatti
,
E.
,
2005
, “
On the Nature of Surface Roughness With Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.
,
17
(
1
), pp.
R1
R62
.
38.
Kauzlarich
,
J. J.
, and
Williams
,
J. A.
,
2001
, “
Archard Wear and Component Geometry
,”
P. I. Mech. Eng. J-J.-Eng.
,
215
(
J4
), pp.
387
403
.
You do not currently have access to this content.