According to that the fuel pump and injectors of the diesel engines are lubricated by the fuel itself, so the lubrication property of the fuels is an important issue in internal combustion engines. Biodiesel is one of the most famous biofuels that can be used in diesel engines. In this research, wear characteristics of biodiesel derived from sunflower and soybean oil blends were investigated. The five fuel blends were tested under steady-state conditions (with durations of 1500 and 3600 s) at four different rotational speeds of 600, 900, 1200, and 1500 rpm. An optical microscope was also applied to check out the worn surfaces of the balls. The results indicated that wear and friction as tribological properties were reduced with the increase in the rotating speed under the steady-state condition. It was found that with an increase in the biodiesel concentration, the friction coefficient was reduced at lower rotating speeds due to free fatty acids, monoglycerides, and diglycerides as the components of biodiesel which help improve the lubrication properties of biodiesel and reduce the friction more than that of other blends. However, in higher rotational speeds, friction and wear of fuel blends included biodiesel increased due to reduced viscosity as the causes of oxidation which helps in the exposure of biodiesel to air at higher temperature. So, B100 has better lubricity properties compared to other fuel blends at lower rotational speeds, and better performance belongs to B20 at higher rotational speeds.

References

1.
Tung
,
S. C.
, and
McMillan
,
M. L.
,
2004
, “
Automotive Tribology Overview of Current Advances and Challenges for the Future
,”
Tribol. Int.
,
37
(
7
), pp.
517
536
.
2.
Serranoab
,
L. M. V.
,
Câmara
,
R. M. O.
,
Vasco
,
J. R.
, and
Gameiro da Silvaa
,
C. M. C.
,
2012
, “
Performance Study About Biodiesel Impact on Buses Engines Using Dynamometer Tests and Fleet Consumption Data
,”
Energy Convers. Manage.
,
60
, pp.
2
9
.
3.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2005
, “
Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity
,”
Energy Fuels
,
19
(
3
), pp.
1192
1200
.
4.
Sarvi
,
A.
,
Fogelholm
,
C.-J.
, and
Zevenhoven
,
R.
,
2008
, “
Emissions From Large-Scale Medium-Speed Diesel Engines—2: Influence of Fuel Type and Operating Mode
,”
Fuel Process. Technol.
,
89
(
5
), pp.
520
527
.
5.
Nwafor
,
O. M. I.
,
2003
, “
The Effect of Elevated Fuel Inlet Temperature on Performance of Diesel Engine Running on Neat Vegetable Oil at Constant Speed Conditions
,”
Renewable Energy
,
28
(
2
), pp.
171
181
.
6.
Haseeb
,
A. S. M. A.
,
Sia
,
S. Y.
,
Fazal
,
M. A.
, and
Masjuki
,
H. H.
,
2010
, “
Effect of Temperature on Tribological Properties of Palm Biodiesel
,”
Energy
,
35
(
3
), pp.
1460
1464
.
7.
Shirneshan
,
A.
,
Hosseinzadeh Samani
,
B.
, and
Ghobadian
,
B.
,
2016
, “
Optimization of Biodiesel Percentage in Fuel Mixture and Engine Operating Conditions for Diesel Engine Performance and Emission Characteristics by Artificial Bees Colony Algorithm
,”
Fuel
,
184
, pp.
518
526
.
8.
Dhar, A., and Agarwal, A. K., 2014, “
Experimental Investigations of Effect of Karanja Biodiesel on Tribological Properties of Lubricating Oil in a Compression Ignition Engine
,”
Fuel
,
130
, pp. 112–119.
9.
Nedayali
,
A.
, and
Shirneshan
,
A.
,
2016
, “
Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator
,”
Energy Environ.
,
27
(
5
), pp.
553
565
.
10.
Shirneshan
,
A.
,
Almassi
,
M.
,
Ghobadian
,
B.
, and
Najafi
,
G.
,
2014
, “
Investigating the Effects of Biodiesel From Waste Cooking Oil and Engine Operating Conditions on the Diesel Engine Performance by Response Surface Methodology
,”
Iranian J. Sci. Technol. Trans. Mech. Eng.
,
38
(
M2
), pp.
289
301
.http://ijstm.shirazu.ac.ir/article_2496_414.html
11.
Ushakov
,
S.
,
Valland
,
H.
, and
Æsøy
,
V.
,
2013
, “
Combustion and Emissions Characteristics of Fish Oil Fuel in a Heavy-Duty Diesel Engine
,”
Energy Convers. Manage.
,
65
, pp.
228
238
.
12.
Demirbas
,
A.
,
2009
, “
Biodiesel From Waste Cooking Oil Via Base-Catalytic and Supercritical Methanol Transesterification
,”
Energy Convers. Manage.
,
50
(
4
), pp.
923
927
.
13.
Shirneshan
,
A.
, and
Nedayali
,
A.
,
2016
, “
Investigation of the Effects of Biodiesel-Diesel Fuel Blends on the Performance and Emission Characteristics of a Diesel Engine
,”
J. Teknol.
,
78
(
6
), pp.
169
177
.
14.
Shirneshan
,
A.
,
Almassi
,
M.
,
Ghobadian
,
B.
,
Borghei
,
A. M.
, and
Najafi
,
G.
,
2016
, “
Response Surface Methodology (RSM) Based Optimization of Biodiesel-Diesel Blends and Investigation of Their Effects on Diesel Engine Operating Conditions and Emission Characteristics
,”
Environ. Eng. Manage. J.
,
15
(
12
), pp.
2771
2780
.
15.
Motamedifar
,
N.
, and
Shirneshan
,
A.
,
2018
, “
An Experimental Study of Emission Characteristics From Cylindrical Furnace: Effects of Using Diesel-Ethanol-Biodiesel Blends and Air Swirl
,”
Fuel
,
221
, pp.
233
239
.
16.
Shirneshan
,
A.
,
Almassi
,
M.
,
Ghobadian
,
B.
,
Borghei
,
A. M.
, and
Najafi
,
G.
,
2012
, “
Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine
,”
Curr. World Environ.
,
7
(
2
), pp.
207
212
.
17.
Tsolakis
,
A.
,
Megaritis
,
A.
,
Wyszynski
,
M. L.
, and
Theinnoi
,
K.
,
2007
, “
Engine Performance and Emissions of a Diesel Engine Operating on Diesel-RME (Rapeseed Methyl Ester) Blends With EGR (Exhaust Gas Recirculation)
,”
Energy
,
32
(
11
), pp.
2072
2080
.
18.
Hu
,
Z.
,
Tan
,
P.
,
Yan
,
X.
, and
Lou
,
D.
,
2008
, “
Life Cycle Energy, Environment and Economic Assessment of Soybean-Based Biodiesel as an Alternative Automotive Fuel in China
,”
Energy
,
33
(
11
), pp.
1654
1658
.
19.
Fraer
,
F.
,
Dinh
,
H.
,
Proc
,
K.
,
McCormick
,
R. L.
,
Chandler
,
K.
, and
Buchholz
,
B.
,
2005
, “
Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20)
,”
SAE
Paper No. 2005-01-3641.
20.
Saravanan
,
S.
,
Nagarajan
,
G.
,
Lakshmi Narayana Rao
,
G.
, and
Sampath
,
S.
,
2010
, “
Combustion Characteristics of a Stationary Diesel Engine Fuelled With a Blend of Crude Rice Bran Oil Methyl Ester and Diesel
,”
Energy
,
35
(
1
), pp.
94
100
.
21.
Karonis
,
D.
,
Anastopoulos
,
G.
,
Lois
,
E.
, and
Serdari
,
A.
, “
Assessment of the Lubricity of Greek Road Diesel and the Effect of the Addition of Specific Types of Biodiesel
,”
SAE
Paper No. 1999-01-1471.
22.
Hughes
,
J. M.
,
Mushrush
,
G. W.
, and
Hardy
,
D. R.
,
2002
, “
Lubricity-Enhancing Properties of Soy Oil When Used as a Blending Stock for Middle Distillate Fuels
,”
Ind. Eng. Chem. Res.
,
41
(
5
), pp.
1386
1388
.
23.
Maleque
,
M. A.
,
Masjuki
,
H. H.
, and
Haseeb
,
A. S. M. A.
,
2000
, “
Effect of Mechanical Factors on Tribological Properties of Palm Oil Methyl Ester Blended Lubricant
,”
Wear
,
239
(
1
), pp.
117
125
.
24.
Goodrum
,
J. W.
, and
Geller
,
D. P.
,
2005
, “
Influence of Fatty Acid Methyl Esters From Hydroxylated Vegetable Oils on Diesel Fuel Lubricity
,”
Bioresour. Technol.
,
96
(
7
), pp.
851
855
.
25.
Anastopoulos
,
G.
,
Lois
,
E.
,
Karonis
,
S.
,
Kalligeros
,
D.
, and
Zannikos
,
F.
,
2005
, “
Impact of Oxygen and Nitrogen Compounds on the Lubrication Properties of Low Sulfur Diesel Fuels
,”
Energy
,
30
(
2–4
), pp.
415
426
.
26.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2013
, “
Investigation of Friction and Wear Characteristics of Palm Biodiesel
,”
Energy Convers. Manage.
,
67
, pp.
251
256
.
27.
Sulek
,
M. W.
,
Kulczycki
,
A.
, and
Malysa
,
A.
,
2010
, “
Assessment of Lubricity of Compositions of Fuel Oil With Biocomponents Derived From Rape-Seed
,”
Wear
,
268
(
1–2
), pp.
104
108
.
28.
Anastopoulos
,
G.
,
Lois
,
E.
,
Serdari
,
A.
,
Zanikos
,
F.
,
Stournas
,
S.
, and
Kalligeros
,
S.
,
2001
, “
Lubrication Properties of Low-Sulfur Diesel Fuels in the Presence of Specific Types of Fatty Acid Derivatives
,”
Energy Fuels
,
15
(
1
), pp.
106
112
.
29.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2014
, “
A Critical Review on the Tribological Compatibility of Automotive Materials in Palm Biodiesel
,”
Energy Convers. Manage.
,
79
, pp.
180
186
.
30.
Masjuki
,
H. H.
, and
Maleque
,
M. A.
,
1997
, “
Investigation of the Anti-Wear Characteristics of Palm Oil Methyl Ester Using a Four-Ball Tribometer Test
,”
Wear
,
206
(
1–2
), pp.
179
186
.
31.
Maru
,
M. M.
,
Trommer
,
R. M.
,
Almeida
,
F. A.
,
Silva
,
R. F.
, and
Acheteac
,
C. A.
,
2013
, “
Assessment of the Lubricant Behaviour of Biodiesel Fuels Using Stribeck Curves
,”
Fuel Process. Technol.
,
116
, pp.
130
134
.
32.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2013
, “
Corrosion Mechanism of Copper in Palm Biodiesel
,”
Corros. Sci.
,
67
, pp.
50
59
.
33.
Tucker
,
R. F.
,
Stradling
,
R. J.
,
Wolveridge
,
P. E.
,
Rivers
,
K. J.
, and
Ubbens
,
A.
,
1994
, “
The Lubricity of Deeply Hydrogenated Diesel Fuels—The Swedish Experience
,”
SAE Trans., Int. J. Fuels Lubr.
,
103
(
4
), pp.
1617
1633
.
34.
Lacey
,
P. I.
,
Naegeli
,
D. W.
,
De La Cruz
,
J. L.
, and
Whalen
,
M. V.
, 2000, “
Lubricity of Volatile Fuels for Compression Ignition Engines
,”
SAE
Paper No. 2000-01-1804. https://doi.org/10.4271/2000-01-1804
35.
Hamdan
,
S. H.
,
Chong
,
W. W. F.
,
Ng
,
J. H.
,
Ghazali
,
M. J.
, and
Woode
,
R. J. K.
, 2017, “
Influence of Fatty Acid Methyl Ester Composition on Tribological Properties of Vegetable Oils and Duck Fat Derived Biodiesel
,”
Tribol. Int.
,
113
, pp. 76–82.
36.
Hu
,
J.
,
Du
,
Z.
,
Li
,
C.
, and
Min
,
E.
,
2005
, “
Study on the Lubrication Properties of Biodiesel as Fuel Lubricity Enhancers
,”
Fuel
,
84
(
12–13
), pp.
1601
1606
.
37.
Xu
,
Y.
,
Wang
,
Q.
,
Hu
,
X.
, and
Chen
,
J.
,
2007
, “
Preliminary Study on Tribological Performance of Straw Based Bio-Fuel
,”
ASME
Paper No. IJTC2007-44098.
38.
Tsuchiya
,
T.
,
Shiotani
,
H.
,
Goto
,
S.
,
Sugiyama
,
G.
, and
Maeda
,
A.
,
2006
, “
Japanese Standards for Diesel Fuel Containing 5% FAME: Investigation of Acid Generation in FAME Blended Diesel Fuels and Its Impact on Corrosion
,”
SAE
Paper No. 2006-01-3303.
39.
Yamane
,
K.
,
Kawasaki
,
K.
,
Sone
,
K.
,
Hara
,
T.
, and
Prakoso
,
T.
,
2006
, “
Unsaturated Fatty Acid Methyl Esters and Thermal Oxidation Characteristics
,”
Rev. Automot. Eng.
,
27
(
4
), pp.
593
600
.
40.
Masjuki
,
H. H.
, and
Maleque
,
M. A.
,
1996
, “
The Effect of Palm Oil Diesel Fuel Contaminated Lubricant on Sliding Wear of Cast Irons Against Mild Steel
,”
Wear
,
198
(
1–2
), pp.
293
299
.
41.
Agarwal
,
A. K.
,
Bijwe
,
J.
, and
Das
,
L. M.
,
2003
, “
Wear Assessment in a Biodiesel Fueled Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
820
826
.
42.
Haseeb
,
A. S. M. A.
,
Masjuki
,
H. H.
,
Siang
,
C. T.
, and
Fazal
,
M. A.
,
2010
, “
Compatibility of Elastomers in Palm Biodiesel
,”
Renewable Energy
,
35
(
10
), pp.
2356
2361
.
43.
Haseeb
,
A. S. M. A.
,
Jun
,
T. S.
,
Fazal
,
M. A.
, and
Masjuki
,
H. H.
,
2011
, “
Degradation of Physical Properties of Different Elastomers Upon Exposure to Palm Biodiesel
,”
Energy
,
36
(
3
), pp.
1814
1819
.
44.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2010
, “
Comparative Corrosive Characteristics of Petroleum Diesel and Palm Biodiesel for Automotive Materials
,”
Fuel Process. Technol.
,
91
(
10
), pp.
1308
1315
.
You do not currently have access to this content.