Abstract

Bolted joints are one of the most common fastening methods in engineering applications. To meet the requirements of structural parts, the torque method is often used for controlling the bolted joint performance. However, only a few investigations have been carried out on the conversion efficiency of bolt torque to the tensile force, leading to uncertainty and potential safety hazards during the bolt tightening. In order to study the input torque distribution and overcome problems caused by the Motosh method and experimental investigations, a new energy-based torque distribution model is established in the present study. In the proposed model, numerous affecting parameters, including the connector compression work, effective bearing radius, effective thread contact radius, and spiral angle are considered. Then a parameterized thread mesh model using finite element technology is proposed to analyze the influence of different bolt friction coefficients on the bolt tightening process. Based on 16 types of tightening analyses, it is concluded that as bolt friction coefficient increases, the corresponding torque conversion rate decreases from 14.45% to 7.89%. Compared with the Motosh method, the torque conversion rate obtained by the proposed method is relatively large, which makes the actual pre-tightening force larger than the design value. However, there is still a possibility of bolt failure.

References

1.
Mínguez
,
J. M.
, and
Vogwell
,
J.
,
2006
, “
Effect of Torque Tightening on the Fatigue Strength of Bolted Joints
,”
Eng. Fail. Anal.
,
13
(
8
), pp.
1410
1421
.
2.
Benhaddou
,
T.
,
Stephan
,
P.
,
Daidie
,
A.
,
Alkatan
,
F.
,
Chirol
,
C.
, and
Tuery
,
J.
,
2018
, “
Effect of Axial Preload on Durability of Aerospace Fastened Joints
,”
Int. J. Mech. Sci.
,
137
, pp.
214
223
.
3.
Hess
,
D. P.
, and
Sudhirkashyap
,
S. V.
,
1997
, “
Dynamic Loosening and Tightening of a Single-Bolt Assembly
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
311
316
.
4.
Sah
,
M.
,
Thomsen
,
J. J.
,
Brøns
,
M.
,
Fidlin
,
A.
, and
Tcherniak
,
D.
,
2018
, “
Estimating Bolt Tightness Using Transverse Natural Frequencies
,”
J. Sound Vib.
,
431
, pp.
137
149
.
5.
VDI
,
2014
, “
Systematic Calculation of High Duty Bolted Joints: Joints With One Cylindrical Bolt
,” Norm of the Association of German Engineers, Dusseldorf, Germany, Standard No. VDI 2230-1.
6.
Phares
,
B.
,
Lee
,
Y.
,
Brockman
,
T.
, and
Rooney
,
J.
,
2016
, “
Investigation of High-Strength Bolt-Tightening Verification Techniques
,” InTrans Project Reports.
7.
Motosh
,
N.
,
1976
, “
Determination of Joint Stiffness in Bolted Connections
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
858
861
.
8.
Allen
,
C. T.
,
2005
, “
Computation of Bolted Joint Stiffness Using Strain Energy
,”
ASME Pressure Vessels and Piping Division Conference
, pp.
123
134
.
9.
Alkatan
,
F.
,
Stephan
,
P.
,
Daidie
,
A.
, and
Guillot
,
J.
,
2007
, “
Equivalent Axial Stiffness of Various Components in Bolted Joints Subjected to Axial Loading
,”
Finite Elem. Anal. Des.
,
43
(
8
), pp.
589
598
.
10.
Nassar
,
S. A.
,
Barber
,
G. C.
, and
Zuo
,
D.
,
2005
, “
Bearing Friction Torque in Bolted Joints
,”
Tribol. Trans.
,
48
(
1
), pp.
69
75
.
11.
Zou
,
Q.
,
Sun
,
T. S.
,
Nassar
,
S. A.
,
Barber
,
G. C.
,
El-Khiamy
,
H.
, and
Zhu
,
D.
,
2005
, “
Contact Mechanics Approach to Determine Effective Radius in Bolted Joints
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
1347
1352
.
12.
Nassar
,
S. A.
,
Matin
,
P. H.
, and
Barber
,
G. C.
,
2005
, “
Thread Friction Torque in Bolted Joints
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
387
393
.
13.
Nassar
,
S. A.
, and
Yang
,
X.
,
2007
, “
Novel Formulation of the Tightening and Breakaway Torque Components in Threaded Fasteners
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
147
160
.
14.
Huang
,
J.
, and
Guo
,
L.
,
2001
, “
The Research on the Torque-Tension Relationship for Bolted Joints
,”
Key Eng. Mater.
,
486
, pp.
242
245
.
15.
Zhu
,
L.
,
Hong
,
J.
, and
Jiang
,
X.
,
2016
, “
On Controlling Preload and Estimating Anti-Loosening Performance in Threaded Fasteners Based on Accurate Contact Modeling
,”
Tribol. Int.
,
95
, pp.
181
191
.
16.
Bhushan
,
B.
,
2013
,
Introduction to Tribology
, 2nd ed.,
John Wiley & Sons, Inc.
,
New York
.
17.
Kudo
,
H.
,
1960
, “
Some Analytical and Experimental Studies of Axi-Symmetric Cold Forging and Extrusion-I, II
,”
Int. J. Mech. Sci.
,
2
(
1–2
), pp.
102
127
.
18.
Dowson
,
D.
,
1979
,
History of Tribology
, 2nd ed.,
Wiley
,
London
.
19.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1950
,
The Friction and Lubrication of Solids
, 1st ed.,
Oxford University Press
,
New York
.
20.
Moreau
,
J. J.
, and
Panagiotopoulos
,
P. D.
,
1988
,
Non-Smooth Mechanics and Applications.
,
Springer
,
Berlin
.
21.
Zhang
,
J.
, and
Mosleby
,
F. A.
,
1991
, “
A Model for Friction in Quasi-Steady-State Sliding Part I. Derivation
,”
Wear
,
149
(
1
), pp.
1
12
.
22.
Zhang
,
J.
,
Mosleby
,
F. A.
, and
Rice
,
S. L.
,
1991
, “
A Model for Friction in Quasi-Steady-State Sliding Part II. Numerical Results and Discussion
,”
Wear
,
149
(
2
), pp.
13
25
.
23.
Tan
,
X.
,
2002
, “
Comparisons of Friction Models in Bulk Metal Forming
,”
Tribol. Int.
,
35
(
6
), pp.
385
393
.
24.
Tan
,
X.
,
2007
, “
Friction of Plasticity: Application of the Dynamic Friction Model
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
221
(
2
), pp.
115
131
.
25.
Tayebi
,
N.
, and
Polycarpou
,
A. A.
,
2004
, “
Modeling the Effect of Skewness and Kurtosis on the Static Friction Coefficient of Rough Surfaces
,”
Tribol. Int.
,
37
(
6
), pp.
491
505
.
26.
Grabon
,
W. A.
,
Osetek
,
M.
, and
Mathia
,
T. G.
,
2017
, “
Friction of Threaded Fasteners
,”
Tribol. Int.
,
118
, pp.
408
420
.
27.
Liu
,
Z.
,
Jiang
,
K.
,
Dong
,
X.
,
Zhang
,
C.
,
Tian
,
Y.
, and
Hu
,
Q.
,
2020
, “
A Research Method of Bearing Coefficient in Fasteners Based on the Fractal and Florida Theory
,”
Tribol. Int.
,
152
, p.
106544
.
28.
Fukuoka
,
T.
,
1992
, “
Finite Element Simulation of Tightening Process of Bolted Joint With a Tensioner
,”
ASME J. Pressure Vessel Technol.
,
114
(
4
), pp.
433
438
.
29.
Jiang
,
Y.
,
Chang
,
J.
, and
Lee
,
C. H.
,
2001
, “
An Experimental Study of the Torque-Tension Relationship for Bolted Joints
,”
Int. J. Mater. Prod. Technol.
,
16
(
4/5
), pp.
417
429
.
30.
Nassar
,
S. A.
,
Elkhiamy
,
H.
,
Barber
,
G. C.
,
Zou
,
Q.
, and
Sun
,
T. S.
,
2005
, “
An Experimental Study of Bearing and Thread Friction in Fasteners
,”
ASME J. Tribol.
,
127
(
2
), pp.
1097
1114
.
31.
Zou
,
Q.
,
Sun
,
T. S.
,
Nassar
,
S. A.
,
Barber
,
G. C.
, and
Gumul
,
A. K.
,
2007
, “
Effect of Lubrication on Friction and Torque-Tension Relationship in Threaded Fasteners
,”
Tribol. Trans.
,
50
(
1
), pp.
127
136
.
32.
Liu
,
Z.
,
Zheng
,
M.
,
Yan
,
X.
,
Zhao
,
Y.
,
Cheng
,
Q.
, and
Yang
,
C.
,
2020
, “
Changing Behavior of Friction Coefficient for High Strength Bolts During Repeated Tightening
,”
Tribol. Int.
,
151
, p.
106486
.
33.
Wettstein
,
A.
,
Kretschmer
,
T.
, and
Matthiesen
,
S.
,
2020
, “
Investigation of Dynamic Friction During Impact Tightening of Bolted Joints
,”
Tribol. Int.
,
146
, p.
106251
.
34.
Fukuoka
,
T.
, and
Nomura
,
M.
,
2008
, “
Proposition of Helical Thread Modeling With Accurate Geometry and Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), pp.
135
140
.
35.
Ganeshmurthy
,
S.
, and
Nassar
,
S. A.
,
2014
, “
Finite Element Simulation of Process Control for Bolt Tightening in Joints With Nonparallel Contact
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021018
.
36.
Johnson
,
K. L.
,
2011
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.