Abstract

The Morton effect (ME) occurs when a bearing journal experiences asymmetric heating due to synchronous vibration, resulting in thermal bowing of the shaft and increasing vibration. An accurate prediction of the journal's asymmetric temperature distribution is critical for reliable ME simulation. This distribution is strongly influenced by the film thermal boundary condition at the pad inlets. Part I utilizes machine learning (ML) to obtain a two-dimensional radial and axial distribution of temperatures over the leading-edge film cross section. The hybrid finite volume method (FVM)—bulk flow method of Part I eliminated film temperature discontinuities and is utilized in Part II for improving accuracy and efficiency of ME simulation.

References

1.
Morton
,
P. G.
,
1975
, “
Some Aspects of Thermal Instability in Generators
,”
G.E.C. Internal Report No. S/W40 u183
.
2.
Hesseborn
,
B.
,
1978
, “
Measurements of Temperature Unsymmetries in Bearing Journal Due to Vibration
,”
Internal Report ABB Stal
.
3.
De Jongh
,
F.
,
2008
, “
The Synchronous Rotor Instability Phenomenon—Morton Effect
,”
37th Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
159
167
.
4.
Panara
,
D.
,
Panconi
,
S.
, and
Griffini
,
D.
,
2015
, “
Numerical Prediction and Experimental Validation of
Rotor Thermal Instability
,”
44th Turbomachinery Symposium
,
Houston, TX
,
Sept. 14–17
.
5.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060801
.
6.
Keogh
,
P.
, and
Morton
,
P.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London, Ser. A
,
441
(
1913
), pp.
527
548
.
7.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London, Ser. A
,
445
(
1924
), pp.
273
290
.
8.
Gomiciaga
,
R.
, and
Keogh
,
P.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol
,
121
(
1
), pp.
77
84
.
9.
Balbahadur
,
A. C.
, and
Kirk
,
R.
,
2004
, “
Part I—Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
469
475
.
10.
Balbahadur
,
A. C.
, and
Kirk
,
R.
,
2004
, “
Part II—Case Studies for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach
,
10
(
6
), pp.
477
487
.
11.
Murphy
,
B.
, and
Lorenz
,
J.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
.
12.
Childs
,
D.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.
13.
Lee
,
J.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.
14.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
.
15.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
.
16.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
.
17.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
.
18.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
.
19.
Monmousseau
,
P.
, and
Fillon
,
M.
,
2000
, “
Transient Thermoelastohydrodynamic Analysis for Safe Operating Conditions of a Tilting-Pad Journal Bearing During Start-up
,”
Tribol. Int.
,
33
(
2
), pp.
225
231
.
20.
Fillon
,
M.
,
Bligoud
,
J. C.
, and
Frene
,
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings—Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol
,
114
(
3
), pp.
579
587
.
21.
Fillon
,
M.
, and
Bouyer
,
J.
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol. Int.
,
37
(
2
), pp.
129
136
.
22.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings—Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
.
23.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
, and
Fillon
,
M.
,
2012
, “
Experimental Comparison of the Performance of a Journal Bearing With a Single and a Twin Axial Groove Configuration
,”
Tribol. Int.
,
54
, pp.
1
8
.
24.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int
,
64
, pp.
8
15
.
25.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
,
Teixeira
,
J. C.
,
Costa
,
L.
, and
Fillon
,
M.
,
2014
, “
The Role of Lubricant Feeding Conditions on the Performance Improvement and Friction Reduction of Journal Bearings
,”
Tribol. Int.
,
72
, pp.
65
82
.
26.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic CFD Model of a Tilting Pad Journal Bearing-Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
.
27.
Yang
,
J.
, and
Palazzolo
,
A.
,
2020
, “
Computational Fluid Dynamics Based Machine Learning Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling―Part I: Model Validation and Improvements
,”
ASME J. Tribol.
,
143
(
1
), p.
011801
.
28.
Yang
,
J.
, and
Palazzolo
,
A.
,
2020
, “
Computational Fluid Dynamics Based Machine Learning Mixing Prediction for Tilt Pad Journal Bearing TEHD―Part II: Artificial Neural Network Machine Learning
,”
ASME J. Tribol.
,
143
(
1
), p.
011802
.
29.
De Jongh
,
F.
, and
Van Der Hoeven
,
P.
,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
,
Houston, TX
,
Sept. 20–24
, pp.
17
26
.
30.
Oh
,
J.
,
Palazzolo
,
A.
, and
Hu
,
L.
,
2020
, “
Stability of Non-Axisymmetric Rotor and Bearing Systems Modeled With Three-Dimensional-Solid Finite Elements
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011010
.
31.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
.
32.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow-Rotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
.
33.
Palazzolo
,
A.
,
2016
,
Vibration Theory and Applications With Finite Elements and Active Vibration Control
,
Wiley
,
New York, Chichester, UK
.
You do not currently have access to this content.