Abstract

Labyrinth seals are widely applied in turbomachinery for gas and liquid sealing. A series of labyrinth seal leakage equations so far have been proposed for compressible gas and few equations for incompressible liquid. Based on the flow conserving governing equations, this paper originally presents semi-empirical analytic equations of the leakage flow rate and tooth-clearance pressure for liquid-phase flow in the straight-through labyrinth seal. The equations indicate that the leakage and pressure are closely related to the inlet pressure, outlet pressure, seal geometrical parameters, and four empirical coefficients, while no relation to the temperature and compressibility effects compared to the common gas equations. The empirical coefficients include the velocity compensation coefficient, friction coefficient, jet contraction coefficient, and resistance coefficient. Particularly, the velocity compensation coefficient is determined through an optimization by the genetic algorithm, while others are referred from previous research. Ultimately, taking the sealing of deeply subcooled liquid nitrogen within the spindle of the cryogenic cooling machine tool as a case, the accuracy of proposed equations is evaluated under various pressure ratios and geometry conditions using the numerical approach, whose numerical model has been validated by the experimental data in the literature. The results show that errors between calculation and simulation are generally within the limit of ±5%, except for the pressure values at the first two teeth. This work provides a theoretical basis for further studies on the liquid leakage equations in other labyrinth seal types.

References

1.
Qiao
,
B.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2019
, “
Numerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071107
.
2.
Lu
,
T.
,
Kudaravalli
,
R.
, and
Georgiou
,
G.
,
2018
, “
Cryogenic Machining Through the Spindle and Tool for Improved Machining Process Performance and Sustainability: Pt. I, System Design
,”
Procedia Manuf.
,
21
, pp.
266
272
.
3.
Trutnovsky
,
K.
,
1949
,
Berührungsfreie Dichtungen
,
Springer
,
Berlin
.
4.
Suryanarayanan
,
S.
, and
Morrison
,
G. L.
,
2009
, “
Analysis of Flow Parameters Influencing Carry-Over Coefficient of Labyrinth Seals
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
, pp.
1137
1145
, ASME Paper No. GT2009-59245.
5.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.
6.
Thakare
,
M. R.
,
Mason
,
J. F.
,
Owen
,
A. K.
,
Gillespie
,
D. R. H.
,
Wilkinson
,
A. J.
, and
Franceschini
,
G.
,
2016
, “
Effect of Sliding Speed and Counterface Properties on the Tribo-Oxidation of Brush Seal Material Under Dry Sliding Conditions
,”
Tribol. Int.
,
96
, pp.
373
381
.
7.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032503
.
8.
Suryanarayanan
,
S.
, and
Morrison
,
G. L.
,
2009
, “
Effect of Tooth Height, Tooth Width and Shaft Diameter on Carry-Over Coefficient of Labyrinth Seals
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
, pp.
1147
1152
, ASME Paper No. GT2009-59246.
9.
Martin
,
M. H.
,
1908
, “
Labyrinth Packing
,”
Engineering
, pp.
35
36
.
10.
Egli
,
A.
,
1935
, “
The Leakage of Steam Through Labyrinth Seals
,”
Trans. ASME
,
57
, pp.
115
122
.
11.
Hodkinson
,
B.
,
2016
, “
Estimation of the Leakage Through a Labyrinth Gland
,”
PIME
,
141
(
1
), pp.
283
288
.
12.
Vermes
,
G.
,
1961
, “
A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem
,”
ASME J. Eng. Gas Turbines Power
,
83
(
2
), pp.
161
169
.
13.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
John Wiley & Sons
,
New York
.
14.
Zimmermann
,
H.
, and
Wolff
,
K. H.
,
1987
, “
Comparison Between Empirical and Numerical Labyrinth Flow Correlations
,”
Proceedings of the ASME 1987 International Gas Turbine Conference and Exhibition
,
Anaheim, CA
, ASME Paper No. 87-GT-86.
15.
Kim
,
M. S.
,
Bae
,
S. J.
,
Son
,
S.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Critical Flow for Supercritical CO2 Seal
,”
Int. J. Heat Mass Transfer
,
138
, pp.
85
95
.
16.
Mehta
,
N. J.
, and
Childs
,
D. W.
,
2014
, “
Measured Comparison of Leakage and Rotordynamic Characteristics for a Slanted-Tooth and a Straight-Tooth Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
012501
.
17.
Stoff
,
H.
,
1980
, “
Incompressible Flow in a Labyrinth Seal
,”
J. Fluid Mech.
,
100
(
4
), pp.
817
829
.
18.
Suryanarayanan
,
S.
,
2009
, “
Labyrinth Seal Leakage Equation
,”
MSc. dissertation
,
Texas A&M University
,
College Station, TX
.
19.
Szymański
,
A.
,
Wróblewski
,
W.
,
Frączek
,
D.
,
Bochon
,
K.
,
Dykas
,
S.
, and
Marugi
,
K.
,
2018
, “
Optimization of the Straight-Through Labyrinth Seal With a Smooth Land
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122503
.
20.
Wróblewski
,
W.
,
Frączek
,
D.
, and
Marugi
,
K.
,
2018
, “
Leakage Reduction by Optimisation of the Straight-Through Labyrinth Seal With a Honeycomb and Alternative Land Configurations
,”
Int J. Heat Mass Transfer
,
126
, pp.
725
739
.
21.
Wu
,
T.
, and
Andrés
,
L. S.
,
2019
, “
Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042501
.
22.
Rapisarda
,
A.
,
Desando
,
A.
,
Campagnoli
,
E.
, and
Taurino
,
R.
,
2016
, “
Rounded Fin Edge and Step Position Effects on Discharge Coefficient in Rotating Labyrinth Seals
,”
ASME J. Turbomach.
,
138
(
1
), p.
011005
.
23.
Li
,
Z.
,
Li
,
J.
,
Yan
,
X.
, and
Feng
,
Z.
,
2011
, “
Effects of Pressure Ratio and Rotational Speed on Leakage Flow and Cavity Pressure in the Staggered Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
114503
.
24.
Yan
,
X.
,
Li
,
J.
,
Yan
,
X.
,
Song
,
L.
, and
Feng
,
Z.
,
2009
, “
Investigations on the Discharge and Total Temperature Increase Characteristics of the Labyrinth Seals With Honeycomb and Smooth Lands
,”
ASME J. Turbomach.
,
131
(
4
), p.
041009
.
25.
Qin
,
H.
,
Lu
,
D.
,
Zhong
,
D.
,
Wang
,
Y.
, and
Song
,
Y.
,
2020
, “
Experimental and Numerical Investigation for the Geometrical Parameters Effect on the Labyrinth-Seal Flow Characteristics of Fast Reactor Fuel Assembly
,”
Ann. Nucl. Energy
,
135
, p.
106964
.
26.
Nayak
,
K. C.
,
2020
, “
Effect of Rotation on Leakage and Windage Heating in Labyrinth Seals With Honeycomb Lands
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081001
.
27.
Han
,
L.
,
Wang
,
Y.
,
Liu
,
K.
,
Ban
,
Z.
, and
Liu
,
H.
,
2020
, “
Theoretical Modeling for Leakage Characteristics of Two-Phase Flow in the Cryogenic Labyrinth Seal
,”
Int. J. Heat Mass Transfer
,
159
, p.
120151
.
28.
Scharrer
,
K. J.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Labyrinth Gas Seals: Part I—A Two Control Volume Model
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
270
280
.
29.
Zhou
,
J.
,
2007
, “
Analysis of Leakage Flow and Dynamic Coefficient of Gas Labyrinth Seals Using a Three Control Volume Method
,”
Ph.D. dissertation
,
University of Virginia
,
Charlottesville, VL
.
30.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
31.
Yamada
,
Y.
,
1962
, “
On the Pressure Loss of Flow Between Rotating Co-Axial Cylinders With Rectangular Grooves
,”
Bull. JSME
,
20
(
5
), pp.
642
651
.
32.
ANSYS, Inc.
,
2009
,
ANSYS FLUENT 12.0 Theory Guide
,
ANSYS® Academic Research
,
Canonsburg, PA
.
33.
Asok
,
S. P.
,
Sankaranarayanasamy
,
K.
,
Sundararajan
,
T.
,
Vaidyanathan
,
G.
, and
Kumar
,
K. U.
,
2011
, “
Pressure Drop and Cavitation Investigations on Static Helical-Grooved Square, Triangular and Curved Cavity Liquid Labyrinth Seals
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
843
853
.
34.
Zhang
,
M.
,
Childs
,
D. W.
, Jr.
,
Mclean
,
J. E.
,
Tran
,
D. L.
, and
Shrestha
,
H.
,
2019
, “
Experimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures
,”
ASME J. Tribol.
,
141
(
4
), p.
042201
.
35.
Vose
,
M. D.
,
1999
,
The Simple Genetic Algorithm: Foundations and Theory
,
MIT Press
,
Cambridge
.
You do not currently have access to this content.