Abstract

In this study, a pure magnesium material reinforced with 0.5, 1, 1.5, and 2 w% of CaO was prepared through disintegrated melt deposition technique (DMD process). Nanocomposites were investigated for their sliding wear behavior in dry condition at room temperature. The amount of CaO, load, sliding distance, and sliding velocity were selected as input design parameters at their five level in central composite design using minitab 18.1 statistical software. The influence of design parameters on wear loss is reported through the response surface methodology (RSM). Analysis of variance (ANOVA) was used to confirm the soundness of the developed regression equation. The results indicate the contribution of linear, quadratic, and interaction terms of design parameters on response. Three-dimensional response surface and two-dimensional contour plots indicate the interaction effect. The result shows that an increase in the sliding velocity contributes to a decrease in the wear loss of the composites because of the emergence of protective oxidative layer at the surfaces of the pins, which is confirmed through field emission scanning electron microscope and energy dispersive X-ray analysis analyses of the pin surfaces. Wear loss of the material decreased as the amount of CaO increased. The ANOVA analysis concluded that the sliding distance and load contribute significantly to wear loss of the composites, and their percentage of contribution is 64.02% and 3.69%.

References

1.
Lloyd
,
D. J.
,
1994
, “
Particle Reinforced Aluminium and Magnesium Matrix Composites
,”
Int. Mater. Rev.
,
39
(
1
), pp.
1
23
.
2.
Lawson
,
G. W.
,
1972
, “
Short Communication
,”
Biol. Conserv.
,
4
(
4
), pp.
292
300
.
3.
Seenuvasaperumal
,
P.
,
Elayaperumal
,
A.
, and
Jayavel
,
R.
,
2017
, “
Influence of Calcium Hexaboride Reinforced Magnesium Composite for the Mechanical and Tribological Behviour
,”
Tribol. Int.
,
111
, pp.
18
25
.
4.
Kaviti
,
R. V. P.
,
Jeyasimman
,
D.
,
Parande
,
G.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2018
, “
Investigation on Dry Sliding Wear Behavior of Mg/BN Nanocomposites
,”
J. Magnesium Alloys
,
6
(
3
), pp.
263
276
.
5.
Manakari
,
V.
,
Parande
,
G.
,
Doddamani
,
M.
, and
Gupta
,
M.
,
2019
, “
Evaluation of Wear Resistance of Magnesium/Glass Microballoon Syntactic Foams for Engineering/Biomedical Applications
,”
Ceram. Int.
,
45
(
7
), pp.
9302
9305
.
6.
Zhang
,
L.
,
Luo
,
X.
,
Liu
,
J.
,
Leng
,
Y.
, and
An
,
L.
,
2018
, “
Dry Sliding Wear Behavior of Mg-SiC Nanocomposites With High Volume Fractions of Reinforcement
,”
Mater. Lett.
,
228
, pp.
112
115
.
7.
Abed Zaid
,
H. M.
,
Abed
,
A. R. N.
, and
Hasan
,
H. S.
,
2020
, “
Improvement of Mechanical Properties of Magnesium (Mg) Matrix Composites Reinforced With Nano Alumina (Al2O3) Particles
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
671
(
1
), p.
012162
.
8.
Aydin
,
F.
, and
Sun
,
Y.
,
2018
, “
Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate-Reinforced Magnesium Matrix Composites
,”
Can. Metall. Q.
,
57
(
4
), pp.
455
469
.
9.
Turan
,
M. E.
,
Sun
,
Y.
,
Aydın
,
F.
, and
Akgul
,
Y.
,
2018
, “
Influence of Multi-Wall Carbon Nanotube Content on Dry and Corrosive Wear Performances of Pure Magnesium
,”
J. Compos. Mater.
,
52
(
23
), pp.
3127
3135
.
10.
Sharma
,
S. C.
,
Anand
,
B.
, and
Krishna
,
M.
,
2000
, “
Evaluation of Sliding Wear Behaviour of Feldspar Particle-Reinforced Magnesium Alloy Composites
,”
Wear
,
241
(
1
), pp.
33
40
.
11.
Lim
,
C. Y. H.
,
Lim
,
S. C.
, and
Gupta
,
M.
,
2003
, “
Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites
,”
Wear
,
255
(
1–6
), pp.
629
637
.
12.
Somekawa
,
H.
,
Maeda
,
S.
,
Hirayama
,
T.
,
Matsuoka
,
T.
,
Inoue
,
T.
, and
Mukai
,
T.
,
2013
, “
Microstructural Evolution During Dry Wear Test in Magnesium and Mg-Y Alloy
,”
Mater. Sci. Eng. A
,
561
, pp.
371
377
.
13.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
,
Somashekar
,
D. R.
, and
Basawaraj
,
2015
, “
Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials
,”
Tribol. Trans.
,
58
(
3
), pp.
481
489
.
14.
Selvam
,
B.
,
Marimuthu
,
P.
,
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
,
Tun
,
K. S.
,
Gupta
,
M.
, and
Kamaraj
,
M.
,
2014
, “
Dry Sliding Wear Behaviour of Zinc Oxide Reinforced Magnesium Matrix Nano-Composites
,”
Mater. Des.
,
58
, pp.
475
481
.
15.
Lee
,
J. K.
,
Yoon
,
Y. O.
, and
Kim
,
S. K.
,
2007
, “
Development of Environment-Friendly CaO Added AZ31 Mg Alloy
,”
Solid State Phenom.
,
124–126
, pp.
1481
1484
.
16.
Jang
,
D. I.
,
Yoon
,
Y. O.
,
Jung
,
S. B.
, and
Kim
,
S. K.
,
2008
, “
Effect of CaO on AZ31 Mg Strip Castings
,”
Mater. Trans.
,
49
(
5
), pp.
976
979
.
17.
Tekumalla
,
S.
,
Gupta
,
M.
, and
Min
,
K. H.
,
2018
, “
Using CaO Nanoparticles to Improve Mechanical and Ignition Response of Magnesium
,”
Curr. Nanomater.
,
3
(
1
), pp.
44
51
.
18.
Nam
,
N. D.
,
Bian
,
M. Z.
,
Forsyth
,
M.
,
Seter
,
M.
,
Tan
,
M.
, and
Shin
,
K. S.
,
2012
, “
Effect of Calcium Oxide on the Corrosion Behaviour of AZ91 Magnesium Alloy
,”
Corros. Sci.
,
64
, pp.
263
271
.
19.
Nam
,
T. H.
,
Kim
,
S. H.
,
Kim
,
J. G.
, and
Kim
,
S. K.
,
2014
, “
Corrosion Resistance of Extruded Mg-3Al-1Zn Alloy Manufactured by Adding CaO for the Replacement of the Protective Gases
,”
Mater. Corros.
,
65
(
6
), pp.
577
581
.
20.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2015
, “
Magnesium-Based Nanocomposites: Lightweight Materials of the Future
,”
Mater. Charact.
,
105
, pp.
30
46
.
21.
López
,
A. J.
,
Rodrigo
,
P.
,
Torres
,
B.
, and
Rams
,
J.
,
2011
, “
Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy
,”
Wear
,
271
(
11–12
), pp.
2836
2844
.
22.
Srinivasan
,
M.
,
Loganathan
,
C.
,
Kamaraj
,
M.
,
Nguyen
,
Q. B.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2012
, “
Sliding Wear Behaviour of AZ31B Magnesium Alloy and Nano-Composite
,”
Trans. Nonferrous Met. Soc. China
,
22
(
1
), pp.
60
65
.
23.
Suresha
,
S.
, and
Sridhara
,
B. K.
,
2010
, “
Effect of Silicon Carbide Particulates on Wear Resistance of Graphitic Aluminium Matrix Composites
,”
Mater. Des.
,
31
(
9
), pp.
4470
4477
.
You do not currently have access to this content.