Abstract

In this research paper, an attempt has been made to investigate the torque transmission characteristics in a radial magnetorheological (MR) clutch disc with different groove profiles. To estimate the transmitted torque, a numerical procedure is initiated by the implementation of the Bingham constitutive model into a magnetic field analysis followed by computational fluid dynamic (CFD) analysis. CFD results are presented for the analysis of transmitted torque between a plane driving disc and three different driven discs, i.e., plane, radial groove, and circular groove disc, under the conditions of different working radii, magnetic fields, and rotational speeds. The MR fluid (MRF) domain is modeled using a technique which can be applied for any wall texture of driving and driven disc. To verify the numerical findings, an MR clutch with three different discs and a MR transmission test bed have been built, and the influence of groove profile on the transmission torque of MRFs has been investigated on the test bed. The results are presented to obtain the relationships among torque performance, disc radius, rotational speed, and magnetic field. Numerical results show good agreement of torque transmission for different groove profiles with experiments. Finally, temperature distribution patterns in different three MR clutches and an optimization of the radial groove profile have been analyzed numerically.

References

1.
Kargulewicz
,
M.
,
Iordanoff
,
I.
,
Marrero
,
V.
, and
Tichy
,
J.
,
2012
, “
Modeling of Magnetorheological Fluids by the Discrete Element Method
,”
ASME J. Tribol.
,
134
(
3
), p.
031706
. 10.1115/1.4006021
2.
Bompos
,
D. A.
, and
Nikolakopoulos
,
P. G.
,
2014
, “
Journal Bearing Stiffness and Damping Coefficients Using Nanomagnetorheological Fluids and Stability Analysis
,”
ASME J. Tribol.
,
136
(
4
), p.
041704
. 10.1115/1.4027748
3.
Lee
,
C. H.
,
Lee
,
D. W.
,
Choi
,
J. Y.
,
Choi
,
S. B.
,
Cho
,
W. O.
, and
Yun
,
H. C.
,
2011
, “
Tribological Characteristics Modification of Magnetorheological Fluid
,”
ASME J. Tribol.
,
133
(
3
), p.
031801
. 10.1115/1.4004106
4.
Lu
,
S. B.
,
Choi
,
S. B.
,
Li
,
Y. N.
,
Seong
,
M. S.
, and
Han
,
J. S.
,
2010
, “
Global Integrated Control of Vehicle Suspension and Chassis Key Subsystems
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
4
), pp.
423
441
. 10.1243/09544070JAUTO1104
5.
Shamieh
,
H.
, and
Sedaghati
,
R.
,
2017
, “
Multi-Objective Design Optimization and Control of Magnetorheological Fluid Brakes for Automotive Applications
,”
Smart. Mater. Struct.
,
26
(
12
), p.
125012
. 10.1088/1361-665X/aa9452
6.
Yu
,
Y.
,
Zhang
,
J.
, and
Lu
,
S.
,
2019
, “
Design Optimization and Experiment of a Disc-Type MR Device Considering the Centrifugal Effect and Plug Flow Region
,”
Smart. Mater. Struct.
,
28
(
8
), p.
085025
. 10.1088/1361-665X/ab2b4c
7.
Hwang
,
Y. H.
,
Kang
,
S. R.
,
Cha
,
S. W.
, and
Choi
,
S. B.
,
2019
, “
A Robot-Assisted Cutting Surgery of Human-Like Tissues Using a Haptic Master Operated by Magnetorheological Clutches and Brakes
,”
Smart. Mater. Struct.
,
28
(
6
), p.
065016
. 10.1088/1361-665X/ab15bc
8.
Okui
,
M.
,
Kobayashi
,
M.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2019
, “
Delta-Type Four-DOF Force-Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Clutch and Its Application to Lid Opening
,”
Smart. Mater. Struct.
,
28
(
6
), p.
064003
. 10.1088/1361-665X/ab192a
9.
Andrade
,
R. M.
,
Filho
,
B. A.
,
Vimieiro
,
C. B. S.
, and
Pinotti
,
M.
,
2018
, “
Optimal Design and Torque Control of an Active Magnetorheological Prosthetic Knee
,”
Smart. Mater. Struct.
,
27
(
10
), p.
105031
. 10.1088/1361-665X/aadd5c
10.
Neelakantan
,
V. A.
, and
Washington
,
G. N.
,
2005
, “
Modeling and Reduction of Centrifuging in Magnetorheological (MR) Transmission Clutches for Automotive Application
,”
J. Intell. Mater. Syst. Struct.
,
16
(
9
), pp.
703
711
. 10.1177/1045389X05054329
11.
Rizzo
,
R.
,
2017
, “
An Innovative Multi-Gap Clutch Based on Magneto-Rheological Fluids and Electrodynamic Effects: Magnetic Design and Experimental Characterization
,”
Smart. Mater. Struct.
,
26
(
1
), p.
015007
. 10.1177/1045389X05054329
12.
Wu
,
P. H.
,
Xu
,
J.
, and
Zhou
,
X. J.
,
2019
, “
Numerical and Experimental Research on Engagement Process of Wet Multi-Plate Friction Clutches With Groove Consideration
,”
Proc. Inst. Mech. Eng., Part J
,
233
(
10
), pp.
1464
1482
. 10.1177%2F1350650119866045
13.
Miyagawa
,
M.
,
Ogawa
,
M.
,
Okano
,
Y.
,
Hara
,
H.
,
Sasaki
,
S.
, and
Okui
,
K.
,
2009
, “
Numerical Simulation of Temperature and Torque Curve of Multidisk Wet Clutch With Radial and Circumferential Grooves
,”
Tribol. Online
,
4
(
1
), pp.
17
21
. 10.2474/trol.4.17
14.
Wu
,
P. H.
,
Zhou
,
X.
,
Yang
,
C.
,
Lv
,
H.
,
Lin
,
T.
, and
Wu
,
X.
,
2018
, “
Parametric Analysis of the Drag Torque Model of Wet Multi-Plate Friction Clutch With Groove Consideration
,”
Ind. Lubr. Tribol.
,
70
(
7
), pp.
1268
1281
. 10.1108/ILT-03-2017-0063
15.
Nam
,
J.
,
Do
,
H.
, and
Kang
,
J.
,
2017
, “
Effect of Groove Surface on Friction Noise and Its Mechanism
,”
Int. J. Precis. Eng. Manuf.
,
18
(
8
), pp.
1165
1172
. 10.1007/s12541-017-0136-y
16.
Tian
,
Z. Z.
,
Chen
,
F.
, and
Wang
,
D. M.
,
2013
, “
Influence of Wall Characteristics on Transmittable Torque of Magnetorheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
25
(
15
), pp.
1937
1949
. 10.1177/1045389X13512189
17.
Tala-Ighil
,
N.
, and
Fillon
,
M. A.
,
2015
, “
A Numerical Investigation of Both Thermal and Texturing Surface Effects on the Journal Bearings Static Characteristics
,”
Tribol. Int.
,
90
(
22
), pp.
228
239
. 10.1016/j.triboint.2015.02.032
18.
Gorodkin
,
S.
,
Zhuravski
,
N.
, and
Kordonski
,
W.
,
2002
, “
Surface Shear Stress Enhancement Under MR Fluid Deformation
,”
Int. J. Mod. Phys. B
,
16
(
17–18
), pp.
2745
2750
. 10.1142/97898127775460126
19.
Wang
,
N.
,
Li
,
D. H.
,
Song
,
W. L.
,
Xiu
,
S. C.
, and
Meng
,
X. Z.
,
2016
, “
Effect of Surface Texture and Working Gap on the Braking Performance of the Magnetorheological Fluid Brake
,”
Smart. Mater. Struct.
,
25
(
10
), p.
105026
. 10.1088/0964-1726/25/10/105026
20.
Jibin
,
H.
,
Zengxiong
,
P.
, and
Chao
,
W.
,
2012
, “
Experimental Research on Drag Torque for Single-Plate Wet Clutch
,”
ASME J. Tribol.
,
134
(
1
), p.
014502
. 10.1115/1.4005528
21.
Chen
,
M. S.
, and
Bullough
,
W. A.
,
2010
, “
CFD Study of the Flow in a Radial Electrorheological Fluid Clutch
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1569
1574
. 10.1177/1045389X10386988
22.
Shahrivar
,
K.
,
Ortiz
,
A. L.
, and
De Vicente
,
J.
,
2014
, “
A Comparative Study of the Tribological Performance of Ferrofluids and Magnetorheological Fluids Within Steel–Steel Point Contacts
,”
Tribol. Int.
,
78
(
14
), pp.
125
133
. 10.1016/j.triboint.2014.05.008
23.
Mousavi
,
S. M.
,
Biglarian
,
M.
,
Darzi
,
A. A. R.
,
Farhadi
,
M.
,
Afrouzi
,
H. H.
, and
Toghraie
,
D.
,
2019
, “
Heat Transfer Enhancement of Ferrofluid Flow Within a Wavy Channel by Applying a Non-Uniform Magnetic Field
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3331
3343
. 10.1007/s10973-019-08650-6(0123456789
24.
Patel
,
N. S.
,
Deheri
,
G. M.
,
Patel
,
H. C.
,
Shah
,
K. R.
, and
Shukla
,
A.
,
2020
, “
Experimental Tribometric Characteristics Analysis of Ferrofluid Based Journal Bearing System
,”
Tribol. Online
,
15
(
4
), pp.
209
221
. 10.2474/trol.15.209
25.
Sammaiah
,
A.
,
Dai
,
Q.
,
Huang
,
W.
, and
Wang
,
X.
,
2019
, “
Synthesis of GO-Fe3O4-Based Ferrofluid and Its Lubrication Performances
,”
Proc. Inst. Mech. Eng., Part J
,
234
(
7
), pp.
1
8
. 10.1177%2F1350650119882198
26.
Toloian
,
A.
,
Daliri
,
M.
, and
Javani
,
N.
,
2020
, “
The Performance of Squeeze Film Between Parallel Triangular Plates With a Ferro-Fluid Couple Stress Lubricant
,”
Adv. Tribol.
,
2020
, Article No. 8151069, pp.
1
8
. 10.1155/2020/8151069
27.
Kumar
,
A.
, and
Sharma
,
S. C.
,
2019
, “
Textured Conical Hybrid Journal Bearing With ER Lubricant Behaviour
,”
Tribol. Int.
,
129
(
31
), pp.
363
376
. 10.1016/j.triboint.2018.08.040
28.
Chhattal
,
M.
,
Tonggang
,
L.
,
Kun
,
Y.
,
Xin
,
L.
, and
Guangsheng
,
L.
,
2020
, “
Development of a Tribo-Tester for Investigation of Ferrofluids Lubrication Performance on the Thrust Pad Bearing
,”
Tribol. Trans.
,
63
(
6
), pp.
1
8
. 10.1080/10402004.2020.1794092
29.
Huang
,
W.
,
Wu
,
W. B.
, and
Wang
,
X. L.
,
2012
, “
Tribological Properties of Magnetic Surface Lubricated by Ferrofluids
,”
Eur. Phys. J.: Appl. Phys.
,
59
(
3
), p.
31301
. 10.1051/epjap/2012120083
30.
Shen
,
C.
,
Huang
,
W.
,
Ma
,
G.
, and
Wang
,
X.
,
2009
, “
A Novel Surface Texture for Magnetic Fluid Lubrication
,”
Surf. Coat. Technol.
,
204
(
4
), pp.
433
439
. 10.1016/j.surfcoat.2009.08.003
31.
Li
,
J.
,
Dai
,
Q.
,
Huang
,
W.
, and
Wang
,
X.
,
2020
, “
Feasibility Study of Magnetic Fluid Support and Lubrication Behaviors on Micro Magnet Arrays
,”
Tribol. Int.
,
150
(
28
), p.
106407
. 10.1016/j.triboint.2020.106407
32.
Rigoni
,
C.
,
Ferraro
,
D.
,
Carlassara
,
M.
,
Filippi
,
D.
,
Varagnolo
,
S.
,
Pierno
,
M.
,
Talbot
,
D.
,
Abou-Hassan
,
A.
, and
Mistura
,
G.
,
2018
, “
Dynamics of Ferrofluid Drops on Magnetically Patterned Surfaces
,”
Langmuir
,
34
(
30
), pp.
8917
8922
. 10.1021/acs.langmuir.8b01520
33.
Olabi
,
A. G.
, and
Grunwald
,
A.
,
2007
, “
Design and Application of Magneto-Rheological Fluid
,”
Mater. Des.
,
28
(
10
), pp.
2658
2664
. 10.1016/j.matdes.2006.10.009
34.
Kitabayashi
,
H.
,
Li
,
C.
, and
Hiraki
,
H.
,
2003
, “
Analysis of the Various Factors Affecting Drag Torque in Multiple-Plate Wet Clutches
,”
SAE International Spring Fuels and Lubricants Meeting
,
Yokahama, Japan
, pp.
1
6
. 10.4271/2003-01-1973
35.
Iqbal
,
S.
,
Bender
,
F. A.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Mathematical Model and Experimental Evaluation of Drag Torque in Disengaged Wet Clutches
,”
ISRN Tribol.
,
2013
, pp.
1
16
. 10.5402/2013/206539
36.
Park
,
E. J.
,
Luz
,
L. F. D.
, and
Suleman
,
A.
,
2008
, “
Multidisciplinary Design Optimization of an Automotive Magnetorheological Brake Design
,”
Comput. Struct.
,
86
(
3–5
), pp.
207
216
. 10.1016/j.compstruc.2007.01.035
37.
Wang
,
D. M.
,
Hou
,
Y. F.
, and
Tian
,
Z. Z.
,
2013
, “
A Novel High-Torque Magnetorheological Brake With a Water Cooling Method for Heat Dissipation
,”
Smart. Mater. Struct.
,
22
(
2
), p.
025019
. 10.1088/0964-1726/22/2/025019
38.
Sarkar
,
C.
, and
Hirani
,
H.
,
2013
, “
Theoretical and Experimental Studies on a Magnetorheological Brake Operating Under Compression Plus Shear Mode
,”
Smart. Mater. Struct.
,
22
(
11
), p.
115032
. 10.1088/0964-1726/22/11/115032
39.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2020
, “
Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and Its Rheology
,”
IEEE Trans. Magn.
,
56
(
5
), pp.
1
10
. 10.1109/TMAG.2020.2978159
40.
Noma
,
J.
,
2018
,
Nanoparticle Technology Handbook
,
M.
Naito
,
T.
Yokoyama
,
K.
Hosokawa
, and
K.
Nogi
, eds., 3rd ed.,
Elsevier
,
Osaka, Japan
, pp.
655
659
.
41.
Singh
,
A.
,
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2020
, “
Design and Development of a Wedge Shaped Magnetorheological Clutch
,”
Proc. Inst. Mech. Eng., Part L
,
234
(
9
), pp.
1252
1266
. 10.1177/1464420720931886
42.
comsol multiphysics user’s manual
, https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf, Accessed July 2020.
43.
Maugin
,
G. A.
,
1999
,
The Thermomechanics of Nonlinear Irreversible Behaviours
, Vol.
27
,
World Scientific
,
Paris
.
44.
Huang
,
Y.
,
Jiang
,
Y.
,
Yang
,
X.
,
Sun
,
H.
,
Piao
,
H.
, and
Xu
,
R.
,
2016
, “
Enhanced Conductivity of Magnetorheological Fluids Based on Silver Coated Carbonyl Particles
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
1
), pp.
255
259
. 10.1007/s10854-015-3748-y
45.
Song
,
W.
,
Wang
,
S.
,
Choi
,
S. B.
,
Wang
,
N.
, and
Xiu
,
S.
,
2019
, “
Thermal and Tribological Characteristics of a Disc-Type Magnetorheological Brake Operated by the Shear Mode
,”
J. Intell. Mater. Syst. Struct.
,
30
(
5
), pp.
722
733
. 10.1177%2F1045389X18770740
You do not currently have access to this content.