This study describes a facile synthesis of calcium carbonate (CaCO3) monodispersed fine particles from an abundant indigenous and economical source (quicklime) and its enhanced tribological performance as a green additive in commercial lithium grease (CLG). The effects of various experimental parameters on particle morphology were thoroughly examined, and the conditions were optimized. The synthesized uniform particles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, and thermogravimetric (TG) /differential thermal analysis (DTA), and their results confirmed the calcite structure of the synthesized particles. The friction and wear studies were carried out under the applied load of 0.863 N at an ambient temperature for 5 min. The tribological performance of various amounts (1–7%) of cubic-CaCO3 (CCC) particles in CLG showed that 5 wt. % of CCC was the optimum concentration as additive in the present case. For comparison purposes, a commercial CaCO3 powder was used and a decrease in the friction coefficient of CLG was observed to be 33.4% and 16.4% for 5 wt. % CCC and commercial CaCO3 additives, respectively. The significantly enhanced antiwear and antifriction performance of the optimum CCC-CLG in comparison with the blank and commercial CaCO3-additized CLG was quite encouraging, and extensive studies in a real machine-operating environment are in progress for evaluation of the CCC-CLG blend to be used as an economical, green, and high-performance lubricant in mechanical components.

References

1.
Kim
,
H.-J.
,
Seo
,
K.-J.
,
Kang
,
K. H.
, and
Kim
,
D.-E.
,
2016
, “
Nano-Lubrication: A Review
,”
Int. J. Precision Eng. Manuf.
,
17
, pp.
829
841
.
2.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
3.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
2000
, “
Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil
,”
Tribol. Lett.
,
8
, pp.
213
218
.
4.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosyčevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
5.
Xue
,
Q.
,
Liu
,
W.
, and
Zhang
,
Z.
,
1997
, “
Friction and Wear Properties of a Surface-Modified TiO2 Nanoparticle as an Additive in Liquid Paraffin
,”
Wear
,
213
, pp.
29
32
.
6.
Luo
,
T.
,
Wei
,
X.
,
Zhao
,
H.
,
Cai
,
G.
, and
Zheng
,
X.
,
2014
, “
Tribology Properties of Al2O3/TiO2 Nanocomposites as Lubricant Additives
,”
Ceram. Int.
,
40
, pp.
10103
10109
.
7.
Chen
,
S.
, and
Liu
,
W.
,
2001
, “
Characterization and Antiwear Ability of Non-Coated ZnS Nanoparticles and DDP-Coated ZnS Nanoparticles
,”
Mater. Res. Bull.
,
36
, pp.
137
143
.
8.
Hu
,
Z. S.
,
Lai
,
R.
,
Lou
,
F.
,
Wang
,
L.
,
Chen
,
Z.
,
Chen
,
G.
, and
Dong
,
J.
,
2002
, “
Preparation and Tribological Properties of Nanometer Magnesium Borate as Lubricating Oil Additive
,”
Wear
,
252
, pp.
370
374
.
9.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Dang
,
H.
,
2001
, “
Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin
,”
Wear
,
249
, pp.
333
337
.
10.
Deng
,
W.
,
Ji
,
X.
,
Chen
,
Q.
, and
Banks
,
C. E.
,
2011
, “
Electrochemical Capacitors Utilizing Transition Metal Oxides: An Update of Recent Developments
,”
RSC Adv.
,
1
, pp.
1171
1178
.
11.
Svenskaya
,
Y.
,
Parakhonskiy
,
B.
,
Haase
,
A.
,
Atkin
,
V.
,
Lukyanets
,
E.
,
Gorin
,
D.
, and
Antolini
,
R.
,
2013
, “
Anticancer Drug Delivery System Based on Calcium Carbonate Particles Loaded With a Photosensitizer
,”
Biophys. Chem.
,
182
, pp.
11
15
.
12.
Xu
,
Z.
, and
Sun
,
J.
,
2018
, “
Anti-wear Mechanism Analysis of Nano-CaCO3 Additives
,”
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
,
Kuala Lumpur, Malaysia
, E3S Web of Conferences.
13.
Declet
,
A.
,
Reyes
,
E.
, and
Suárez
,
O.
,
2016
, “
Calcium Carbonate Precipitation: A Review of the Carbonate Crystallization Process and Applications in Bioinspired Composites
,”
Rev. Adv. Mater. Sci.
,
44
, pp.
87
107
.
14.
Mohammadifard
,
H.
, and
Amiri
,
M. C.
,
2018
, “
On Tailored Synthesis of Nano CaCO3 Particles in a Colloidal Gas Aphron System and Evaluating Their Performance With Response Surface Methodology for Heavy Metals Removal From Aqueous Solutions
,”
J. Water Environ. Nanotechnol.
,
3
, pp.
141
149
.
15.
Pérez-Villarejo
,
L.
,
Takabait
,
F.
,
Mahtout
,
L.
,
Carrasco-Hurtado
,
B.
,
Eliche-Quesada
,
D.
, and
Sánchez-Soto
,
P. J.
,
2018
, “
Synthesis of Vaterite CaCO3 as Submicron and Nanosized Particles Using Inorganic Precursors and Sucrose in Aqueous Medium
,”
Ceram. Int.
,
44
, pp.
5291
5296
.
16.
Zhao
,
T.
,
Zhang
,
F.
,
Zhang
,
J.
,
Sha
,
F.
,
Xu
,
Q.
,
Guo
,
B.
, and
Wei
,
X.
,
2016
, “
Facile Preparation of Micro and Nano-Sized CaCO3 Particles by a New CO2-Storage Material
,”
Powder Technol.
,
301
, pp.
463
471
.
17.
Kim
,
B.-J.
,
Park
,
E.-H.
,
Choi
,
K.
, and
Kang
,
K.-S.
,
2017
, “
Synthesis of CaCO3 Using CO2 at Room Temperature and Ambient Pressure
,”
Mater. Lett.
,
190
, pp.
45
47
.
18.
Montes-Hernández
,
G.
,
Renard
,
F.
,
Geoffroy
,
N.
,
Charlet
,
L.
, and
Pironon
,
J.
,
2007
, “
Calcite Precipitation from CO2–H2O–Ca(OH)2 Slurry Under High Pressure of CO2
,”
J. Crystal Growth
,
308
, pp.
228
236
.
19.
Zainal
,
N.
,
Zulkifli
,
N.
,
Yusoff
,
M.
,
Masjuki
,
H.
, and
Yunus
,
R.
,
2015
, “
The Feasibility Study of CaCO3 Derived From Cockleshell as Nanoparticle in Chemically Modified Lubricant
,”
Proceedings of Malaysian International Tribology Conference
,
Penang, Malaysia
,
Nov. 16–17
.
20.
Xu
,
N.
,
Zhang
,
M.
,
Li
,
W.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2013
, “
Study on the Selectivity of Calcium Carbonate Nanoparticles Under the Boundary Lubrication Condition
,”
Wear
,
307
, pp.
35
43
.
21.
Ji
,
X.
,
Chen
,
Y.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2011
, “
Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease
,”
Tribol. Lett.
,
41
, pp.
113
119
.
22.
Caixiang
,
G.
,
Qingzhu
,
L.
,
Zhuoming
,
G.
, and
Guangyao
,
Z.
,
2008
, “
Study on Application of CeO2 and CaCO3 Nanoparticles in Lubricating Oils
,”
J. Rare Earths
,
26
, pp.
163
167
.
23.
Hadiko
,
G.
,
Han
,
Y. S.
,
Fuji
,
M.
, and
Takahashi
,
M.
,
2005
, “
Synthesis of Hollow Calcium Carbonate Particles by the Bubble Templating Method
,”
Mater. Lett.
,
59
, pp.
2519
2522
.
24.
Chen
,
Y.
,
Ji
,
X.
,
Zhao
,
G.
, and
Wang
,
X.
,
2010
, “
Facile Preparation of Cubic Calcium Carbonate Nanoparticles With Hydrophobic Properties via a Carbonation Route
,”
Powder Technol.
,
200
, pp.
144
148
.
25.
Xu
,
S.
,
Ye
,
Z.
, and
Wu
,
P.
,
2015
, “
Biomimetic Controlling of CaCO3 and BaCO3 Superstructures by Zwitterionic Polymer
,”
ACS Sust. Chem. Eng.
,
3
, pp.
1810
1818
.
26.
Liu
,
Y.
,
Cui
,
Y.
, and
Guo
,
R.
,
2012
, “
Amphiphilic Phosphoprotein-Controlled Formation of Amorphous Calcium Carbonate With Hierarchical Superstructure
,”
Langmuir
,
28
, pp.
6097
6105
.
27.
López-Arce
,
P.
,
Gómez-Villalba
,
L.
,
Martínez-Ramírez
,
S.
,
de Buergo
,
, and
Fort
,
R.
,
2011
, “
Influence of Relative Humidity on the Carbonation of Calcium Hydroxide Nanoparticles and the Formation of Calcium Carbonate Polymorphs
,”
Powder Technol.
,
205
, pp.
263
269
.
28.
Akhtar
,
K.
,
Gul
,
M.
,
Haq
,
I. U.
,
Khan
,
R. A.
,
Khan
,
Z. U.
, and
Hussain
,
A.
,
2016
, “
Synthesis and Characterization of Uniform Fine Particles of Pure and Chromium-Substituted Manganese Ferrite With Low Dielectric Losses
,”
Ceram. Int.
,
42
, pp.
18064
18073
.
29.
Nurbas
,
M.
,
Kabasakal
,
O. S.
,
Asadov
,
Z. H.
,
Aka-Zade
,
A. D.
,
Ahmadova
,
G. A.
, and
Zenouzi
,
M. B.
,
2005
, “
Surfactants Based on Higher Carboxylic Acids and Epoxy Compounds
,”
Iran. Polym. J.
,
14
, pp.
317
322
.
30.
Barhoum
,
A.
,
Rahier
,
H.
,
Abou-Zaied
,
R. E.
,
Rehan
,
M.
,
Dufour
,
T.
,
Hill
,
G.
, and
Dufresne
,
A.
,
2014
, “
Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating
,”
ACS Appl. Mater. Interfaces
,
6
, pp.
2734
2744
.
31.
Frost
,
R. L.
,
Locos
,
O. B.
,
Ruan
,
H.
, and
Kloprogge
,
J. T.
,
2001
, “
Near-Infrared and Mid-Infrared Spectroscopic Study of Sepiolites and Palygorskites
,”
Vib. Spectrosc.
,
27
, pp.
1
13
.
32.
Lv
,
J.
,
Feng
,
J.
,
Zhang
,
W.
,
Shi
,
R.
,
Liu
,
Y.
,
Wang
,
Z.
, and
Zhao
,
M.
,
2013
, “
Identification of Carbonates as Additives in Pressure-Sensitive Adhesive Tape Substrate With Fourier Transform Infrared Spectroscopy (FTIR) and Its Application in Three Explosive Cases
,”
J. Forensic Sci.
,
58
, pp.
134
137
.
33.
Liu
,
D.
,
Zhang
,
M.
,
Zhao
,
G.
, and
Wang
,
X.
,
2012
, “
Tribological Behavior of Amorphous and Crystalline Overbased Calcium Sulfonate as Additives in Lithium Complex Grease
,”
Tribol. Lett.
,
45
, pp.
265
273
.
34.
Andersen
,
F. A.
, and
Brecevic
,
L.
,
1991
, “
Infrared Spectra of Amorphous and Crystalline Calcium Carbonate
,”
Acta Chem. Scand.
,
45
, pp.
1018
1024
.
35.
Babou-Kammoe
,
R.
,
Hamoudi
,
S.
,
Larachi
,
F.
, and
Belkacemi
,
K.
,
2012
, “
Synthesis of CaCO3 Nanoparticles by Controlled Precipitation of Saturated Carbonate and Calcium Nitrate Aqueous Solutions
,”
Can. J. Chem. Eng.
,
90
, pp.
26
33
.
36.
Elmay
,
Y.
,
Jeguirim
,
M.
,
Trouvé
,
G.
, and
Said
,
R.
,
2016
, “
Kinetic Analysis of Thermal Decomposition of Date Palm Residues Using Coats–Redfern Method
,”
Energy Sour. A Recovery Util. Environ. Effects
,
38
, pp.
1117
1124
.
37.
Zhao
,
G.
,
Zhao
,
Q.
,
Li
,
W.
,
Wang
,
X.
, and
Liu
,
W.
,
2014
, “
Tribological Properties of Nano-Calcium Borate as Lithium Grease Additive
,”
Lubrication Sci.
,
26
, pp.
43
53
.
38.
ASTM G99–95a
,
2000
,
Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus
,
ASTM International
,
West Conshohocken, PA
, pp.
1
6
.
39.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-alpha-Olefin
,”
Tribol. Int.
,
42
, pp.
1029
1039
.
40.
Jin
,
D.
, and
Yue
,
L.
,
2008
, “
Tribological Properties Study of Spherical Calcium Carbonate Composite as Lubricant Additive
,”
Mater. Lett.
,
62
, pp.
1565
1568
.
41.
Gay
,
P.-A.
,
Bercot
,
P.
, and
Pagetti
,
J.
,
2001
, “
Electrodeposition and Characterisation of Ag–ZrO2 Electroplated Coatings
,”
Surf. Coatings Technol.
,
140
, pp.
147
154
.
42.
Battez
,
A. H.
,
Gonzalez
,
R.
,
Felgueroso
,
D.
,
Fernández
,
J.
,
del Rocío Fernández
,
M.
,
García
,
M.
, and
Penuelas
,
I.
,
2007
, “
Wear Prevention Behaviour of Nanoparticle Suspension Under Extreme Pressure Conditions
,”
Wear
,
263
, pp.
1568
1574
.
43.
Sunqing
,
Q.
,
Junxiu
,
D.
, and
Guoxu
,
C.
,
1999
, “
Tribological Properties of CeF3 Nanoparticles as Additives In Lubricating Oils
,”
Wear
,
230
, pp.
35
38
.
44.
Battez
,
A. H.
,
Viesca
,
J.
,
González
,
R.
,
Blanco
,
D.
,
Asedegbega
,
E.
, and
Osorio
,
A.
,
2010
, “
Friction Reduction Properties of a CuO Nanolubricant Used as Lubricant for a NiCrBSi Coating
,”
Wear
,
268
, pp.
325
328
.
45.
Kbulut
,
M.
,
2012
, “
Nanoparticle-Based Lubrication Systems
,”
J. Powder Metallur. Min.
,
1
,
e101
.
46.
Battez
,
A. H.
,
González
,
R.
,
Viesca
,
J.
,
Fernández
,
J.
,
Fernández
,
J. D.
,
Machado
,
A.
,
Chou
,
R.
, and
Riba
,
J.
,
2008
, “
CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants
,”
Wear
,
265
, pp.
422
428
.
47.
Wu
,
Y.
,
Tsui
,
W.
, and
Liu
,
T.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
, pp.
819
825
.
You do not currently have access to this content.