The objective of this research is to conduct a finite element analysis to better understand the effects of induction hardening on rolling contact fatigue (RCF). The finite element analysis was developed in three-dimensional to estimate the maximal loading and the positions of the crack nucleation sites in the case of cylinder contact rolling. Rolling contact with or without surface compressive residual stress (RS) were studied and compared. The RS profile was chosen to simulate the effects of an induction hardening treatment on a 48 HRC tempered AISI4340 steel component. As this hardening process not only generates a RS gradient in the treated component but also a hardness gradient (called over-tempered region), both types of gradients were introduced in the present model. RSs in compression were generated in the hard case (about 60 HRC); tension values were introduced in the over-tempered region, where hardness as low as 38 HRC were set. In order to estimate the maximal allowable loadings in the rotating cylinders to target a life of 106 cycles, a multiaxial Dang Van criterion and a shear stress fatigue limit were used in the positive and negative hydrostatic conditions, respectively. With the proposed approach, the induction hardened component was found to have a maximal allowable loading significantly higher than that obtained with a nontreated one, and it was observed that the residual tensile stress peak found in the over-tempered region could become a limiting factor for fatigue rolling contact life.

References

1.
Glaeser
,
W. A.
, and
S. J.
,
Shaffer
,
Battelle Laboratories
,
1996
, “
Contact Fatigue
,”
ASM Handbook
, Vol.
19
,
Fatigue and Fracture ASM Handbook Committee
, Materials Park, OH, pp.
331
336
.
2.
Tallian
,
T. E.
,
1982
, “
A Unified Model for Rolling Contact Life Prediction
,”
ASME J. Lubr. Technol.
,
104
(
3
), pp.
336
346
.
3.
Halme
,
J.
, and
Andersson
,
P.
,
2009
, “
Rolling Contact Fatigue and Wear Fundamentals for Rolling Bearing Diagnostics—State of the Art
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
224
(
4
), pp.
377
393
.
4.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
5.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Fur Die Reined Angew. Math.
, pp.
156
171
.
6.
Johnson
,
K. L.
,
2004
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
7.
Zaretsky
,
E. V.
,
Parker
,
R. J.
,
Anderson
,
W. J.
, and
Miller
,
S. T.
,
1965
, “
Effect of Component Differential Hardness on Residual Stress and Rolling-Contact Fatigue
,” Scientific and Technical Information Division, National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA TN D-2664
.http://www.dtic.mil/dtic/tr/fulltext/u2/a393880.pdf
8.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1952
, “
Dynamic Capacity of Roller Bearing
,”
Acta Polytech. Scand., Mech. Eng. Ser.
,
2
(4), pp.
1
52
.
9.
Coy
,
J. J.
, and
Zaretsky
,
E. V.
,
1975
, “
Life Analysis of Helical Gear Sets Using Lundberg-Palmgren Theory
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA TN D-8045
.https://ntrs.nasa.gov/search.jsp?R=19750022491
10.
Harris
,
T. A.
, and
Yu
,
W. K.
,
1999
, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
,
121
(
1
), pp.
85
89
.
11.
Zaretsky
,
E. V.
,
Poplawski
,
J. V.
, and
Peters
,
S. M.
,
1995
, “
Comparison of Life Theories for Rolling-Element Bearings
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
N95-26774
.
12.
Harris
,
T. A.
, and
McCool
,
J. I.
,
1996
, “
On the Accuracy of Rolling Bearing Fatigue Life Prediction
,”
ASME J. Tribol.
,
118
(
2
), pp.
297
309
.
13.
Savaria
,
V.
,
2014
, “
Contraintes Résiduelles Et Leurs Impacts Sur L'amorçage De Fissures En Fatigue De Flexion Dans Des Engrenages Aéronautiques Durcis Superficiellement Par Induction
,” Ph.D. dissertation, École de technologie supérieure, Montreal, QC, Canada.
14.
Savaria
,
V.
,
Florent
,
F.
, and
Bocher
,
P.
,
2016
, “
Predicting the Effects of Material Properties Gradient and Residual Stresses on the Bending Fatigue Strength of Induction Hardened Aeronautical Gear
,”
Int. J. Fatigue
,
82
, pp.
70
84
.
15.
Palin-Luc
,
T.
,
Coupard
,
D.
,
Dumas
,
C.
, and
Bristiel
,
P.
,
2011
, “
Simulation of Multiaxial Fatigue Strength of Steel Component Treated by Surface Induction Hardening and Comparison With Experimental Results
,”
Int. J. Fatigue
,
33
(
8
), pp.
1040
1047
.
16.
Muro
,
H.
,
Tsushima
,
T.
, and
Nagafuchi
,
M.
,
1975
, “
Initiation and Propagation of Surface Cracks in Rolling High Hardness Steel
,”
Wear
,
35
(
2
), pp.
261
282
.
17.
Pazdanowski
,
M.
,
2014
, “
Residual Stresses as a Factor of Railroad Rail Fatigue
,” Technical Transaction, Civil Engineering, 4-B/2014, pp.
39
46
. https://suw.biblos.pk.edu.pl/downloadResource&mId=1231348
18.
Morrison
,
R. A.
,
1968
, “
Load/Life Curves for Gear and Cam Materials
,”
Mach. Des.
,
40
, pp.
102
108
.
19.
Koibuchi
,
K.
,
Hayama
,
T.
, and
Kawai
,
S.
,
1982
, “
Residual Stress and Fatigue Strength of Surface Hardened Components
,”
International Conference on Shot peening (ICSP1)
, pp.
413
419
. https://www.shotpeener.com/library/pdf/1981056.pdf
20.
Shipley, E. E., 1974, “
Failure Modes in Gears
,”
Gear Manufacture and Performance
(Materials/metalworking technology series, Vol. 1), Guichelaar, P. J., Levy, B. S., and Parikh, N. M., eds., American Society for Metals, Metals Park, OH, pp.107–135.
21.
Townsend
,
D. P.
,
1995
, “
The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gear
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
ARL-TR-808
.
22.
Akata
,
E.
,
Altinbalik
,
M. T.
, and
Çan
,
Y.
,
2004
, “
Three Point Load Application in Single Tooth Bending Fatigue Test for Evaluation of Gear Blank Manufacturing Methods
,”
Int. J. Fatigue
,
26
(
7
), pp.
785
789
.
23.
Crossland
,
B.
,
1954
, “
The Effect of Fluid Pressure on the Shear Properties of Metals
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
935
946
.
24.
Flavenot
,
J. F.
, and
Skalli
,
N.
,
1984
, “
A Critical Depth Criterion for the Evaluation of Long-Life Fatigue Strength Under Multiaxial Loading and a Stress Gradient
,” Fifth European Conference on Fracture (ECF5), Lisbon, Portugal, Sept. 17–21, pp. 335–344.
25.
Lefebvre
,
D. F.
,
1989
, “
Hydrostatic Pressure Effect on Life Prediction in Biaxial Low-Cycle Fatigue
,”
Biaxial and Multiaxial Fatigue, EGF3
,
Mechanical Engineering Publications
,
London, UK
, pp.
511
533
.
26.
Nemkov
,
V.
,
Goldstein
,
R.
,
Jackowski
,
J.
,
Ferguson
,
L.
, and
Li
,
Z.
,
2013
, “
Stress and Distortion Evolution During Induction Case Hardening of Tube
,”
J. Mater. Eng. Perform.
,
22
(
7
), pp.
1826
1832
.
27.
Dudragne
,
G.
,
Fougeres
,
R.
, and
Theolier
,
M.
,
1981
, “
Analysis Method for Both Internal Stresses and Microstructural Effect Under Pure Rolling Fatigue Conditions
,”
ASME J. Lubr. Technol.
,
103
(
4
), pp.
521
525
.
28.
Ekberg
,
A.
,
Bjarnehed
,
H.
, and
Lunden
,
R.
,
1995
, “
A Fatigue Life Model for General Rolling Contact With Application to Wheel/Rail Damage
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
10
), pp.
1189
1199
.
29.
ANSYS Inc., 2017, “
ANSYS® Academic Research Mechanical, Release 17.2, Help System, ANSYS Mechanical Documentation
,” ANSYS, Canonsburg, PA.
30.
Kim
,
T. Y.
, and
Kim
,
H. K.
,
2014
, “
Three-Dimensional Elastic-Plastic Finite Element Analysis for Wheel-Rail Rolling Contact Fatigue
,”
Int. J. Eng. Technol.
,
6
(
3
), pp.
1593
1600
.http://www.enggjournals.com/ijet/docs/IJET14-06-03-056.pdf
31.
Desimone
,
H.
,
Bernasconi
,
A.
, and
Beretta
,
S.
,
2006
, “
On the Application of Dang Van Criterion to Rolling Contact Fatigue
,”
Wear
,
260
(
4–5
), pp.
567
572
.
32.
Bernasconi
,
A.
,
Davoli
,
P.
,
Filippini
,
M.
, and
Foletti
,
S.
,
2005
, “
An Integrated Approach to Rolling Contact Sub-Surface Fatigue Assessment of Railway Wheels
,”
Wear
,
258
(
7–8
), pp.
973
980
.
33.
Reitinger
,
B.
,
Berer
,
T.
,
Helm
,
O.
, and
Burgholzer
,
P.
,
2008
, “
Alteration of the Elastic Properties of Steel and Cast Iron Caused by Hardening
,”
First International Symposium on Laser Ultrasonics: Science, Technology and Applications
, Montréal, QC, Canada, July 16–18.https://www.ndt.net/article/laser-ut2008/papers/Reitinger%20LU2008.pdf
34.
Kadin
,
Y.
,
2015
, “
Modeling of Hydrogen Transport in Static and Rolling Contact
,”
Tribol. Trans.
,
58
(
2
), pp.
260
273
.
35.
Ferguson
,
B. L.
, and
Li
,
Z.
,
2012
, “
Stress and Deformation During Induction Hardening of Tubular Products
,”
6th International Quenching and Control of Distortion Conference American Society for Metals
, Chicago, IL, Sept. 9–13, pp.
34
44
.
36.
Hömberg
,
D.
,
Liu
,
Q.
,
Montalvo-Urquizo
,
J.
,
Nadolski
,
D.
,
Petzold
,
T.
,
Schmidt
,
A.
, and
Schulz
,
A.
,
2016
, “
Simulation of Multi-Frequency-Induction-Hardening Including Phase Transitions and Mechanical Effects
,”
Finite Elem. Anal. Des.
,
121
, pp.
86
100
.
37.
Dang Van
,
K.
, and
Maitournam
,
H. M.
,
2002
, “
On Some Recent Trends in Modeling of Contact Fatigue and Wear in Rail
,”
Wear
,
253
(
1–2
), pp.
219
227
.
38.
Van Lieshout, P. S., den Besten, J. H., and Kaminski, M. L., 2017, “
Validation of the corrected Dang Van multiaxial fatigue criterion applied to turret bearings of FPSO offloading buoys
,”
Ships and Offshore Structures Journal
(Taylor & Francis),
12
(4), pp. 521–529.
39.
Ciavarella
,
M.
,
Monno
,
F.
, and
Demelio
,
G.
,
2006
, “
On the Dang Van Fatigue Limit in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
28
(
8
), pp.
852
863
.
40.
Constantinescu
,
A.
,
Dang Van
,
K.
, and
Maitournam
,
H. M.
,
2003
, “
A Unified Approach for High and Low Cycle Fatigue Based on Shakedown Concept
,”
Fatigue Fract. Eng. Mat. Struct.
,
26
(
6
), pp. 561–568.
41.
Mobasher Moghaddama
,
S.
,
Bomidi
,
J. A. R.
,
Sadeghi
,
F.
,
Weinzapfel
,
N.
, and
Liebel
,
A.
,
2014
, “
Effect of Compressive Stresses on Torsional Fatigue
,”
Tribol. Int.
,
77
(
2014
), pp.
196
200
.
42.
Romanowicz
,
P.
,
2017
, “
Numerical Assessments of Fatigue Load Capacity of Cylindrical Cram Wheel Using Multiaxial High-Cycle Fatigue Criteria
,”
Arch. Appl. Mech.
,
87
(
10
), pp.
1707
1726
.
43.
Burn
,
D. J.
, and
Parry
,
D. J. S. C.
,
1964
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of Two Steels
,”
J. Mech. Eng. Sci.
,
6
(
3
), pp.
293
308
.
You do not currently have access to this content.