Annular seals serve an important role in the dynamics of turbomachinery by reducing leakage of a process fluid while also contributing potentially destabilizing forces to the rotor system. Hole-pattern seals have been the focus of many investigations, but recent experimental studies have shown that there are still many phenomena that require exploration. One such phenomenon is the influence of hole depth on the static and dynamic characteristics of the seal. In this paper, a hybrid computational fluid dynamics (CFD)/bulk-flow method is employed to investigate the nonmonotonic relationship between hole depth and leakage shown in experimental measurements of a hole-pattern seal by Childs et al. (2014, “The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals,” ASME J. Eng. Gas Turbines Power, 136(4), p. 042501). Three hole depths (1.905 mm, 3.302 mm, and 6.604 mm) and three running speeds (10,200 rpm, 15,350 rpm, and 20,200 rpm) are considered. For the steady-state flow, the 3D Reynolds-Averaged-Navier-Stokes (RANS) equations are solved with the k-ϵ turbulence model for a circumferentially periodic sector of the full seal geometry. The steady-state results are input into the first-order equations of a bulk-flow model to predict rotordynamic coefficients. Results of the hybrid method are compared to experimental data. CFD predicted leakage showed good agreement (within 5%) for the 3.302 mm and 6.604 mm hole depth configurations. For the 1.905 mm hole depth seal, agreement was within 17%. An additional set of calculations performed with the shear stress transport (SST) turbulence model produced worse agreement. Examination of streamlines along the seal show that the hole depth controls the shape of the vortex that forms in the hole, driving the resistance experienced by the jet flow in the clearance region. For the rotordynamic coefficients, good agreement is shown between predictions and experiment for most excitation frequencies.

References

1.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley-Interscience, New York
.
2.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051104
.10.1115/1.4023653
3.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals–Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
4.
Ha
,
T. W.
,
Morrison
,
G. L.
, and
Childs
,
D. W.
,
1992
, “
Friction-Factor Characteristics for Narrow Channels With Honeycomb Surfaces
,”
ASME J. Tribol.
,
114
(
4
), pp.
714
721
.10.1115/1.2920940
5.
Ha
,
T. W.
, and
Childs
,
D. W.
,
1992
, “
Friction-Factor Data for Flat-Plate Tests of Smooth and Honeycomb Surfaces
,”
ASME J. Tribol.
,
114
(
4
), pp.
722
730
.10.1115/1.2920941
6.
Elrod
,
D. A.
,
Childs
,
D. W.
, and
Nelson
,
C. C.
,
1990
, “
An Annular Gas Seal Analysis Using Empirical Entrance and Exit Region Friction Factors
,”
ASME J. Tribol.
,
112
(
2
), pp.
196
204
.10.1115/1.2920242
7.
Al-Qutub
,
A. M.
,
Elrod
,
D.
, and
Coleman
,
H. W.
,
2000
, “
A New Friction Factor Model and Entrance Loss Coefficient for Honeycomb Annular Gas Seals
,”
ASME J. Tribol.
,
122
(
3
), pp.
622
627
.10.1115/1.555411
8.
Holt
,
C. G.
, and
Childs
,
D. W.
,
2002
, “
Theory Versus Experiment for the Rotordynamic Impedances of Two Hole-Pattern Stator Gas Annular
,”
ASME J. Tribol.
,
124
(
1
), pp.
137
143
.10.1115/1.1398297
9.
Vannarsdall
,
M.
, and
Childs
,
D. W.
,
2014
, “
Static and Rotordynamic Characteristics for a New Hole-Pattern Annular Gas Seal Incorporating Larger Diameter Holes
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022507
.10.1115/1.4025536
10.
Chochua
,
G.
,
Shyy
,
W.
, and
Moore
,
J.
,
2002
, “
Computational Modeling for Honeycomb-Stator Gas Annular Seal
,”
Int. J. Heat Mass Transfer
,
45
(
9
), pp.
1849
1863
.10.1016/S0017-9310(01)00280-0
11.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.10.1115/1.2647531
12.
Liliedahl
,
D. N.
,
Carpenter
,
F. L.
, and
Cizmas
,
P. G. A.
,
2011
, “
Prediction of Aeroacoustic Resonance in Cavities of Hole-Pattern Stator Seals
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022504
.10.1115/1.4002038
13.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
14.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2012
, “
Rotordynamic Performance Prediction for Surface-Roughened Seal Using Transient Computational Fluid Dynamics and Elliptical Orbit Model
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
226
(
8
), pp.
975
988
.10.1177/0957650912460358
15.
Nielson
,
K. K.
,
Jonck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122505
.10.1115/1.4007344
16.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2012
, “
A CFD/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(
2
), p.
022202
.10.1115/1.4006407
17.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Witt
,
W. C.
,
Morgan
,
N. R.
, and
Wood
,
H. G.
,
2013
, “
Hybrid Analysis of Gas Annular Seals With Energy Equation
,”
ASME J. Tribol.
,
136
(3), p. 03170.10.1115/1.4026590
18.
Untaroiu
,
A.
,
Liu
,
C.
,
Migliorini
,
P. J.
,
Wood
,
H. G.
, and
Untaroiu
,
C. D.
,
2013
, “
Hole-Pattern Seals Performance Optimization Using Computational Fluid Dynamics and Design of Experiment Techniques
,”
ASME
Paper No. IMECE2013-66387.10.1115/IMECE2013-66387
19.
Nelson
,
C. C.
,
1984
, “
Analysis for Leakage and Rotordynamic Coefficients of Surface-Roughened Tapered Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
927
934
.10.1115/1.3239660
20.
Nelson
,
C. C.
,
1985
, “
Rotordynamic Coefficients for Compressible Flow in Tapered Annular Seals
,”
ASME J. Tribol.
,
107
(
3
), pp.
318
325
.10.1115/1.3261062
21.
Ha
,
T. W.
, and
Childs
,
D. W.
,
1994
, “
Annular Honeycomb-Stator Turbulent Gas Seal Analysis Using a New Friction-Factor Model Based on Flat Plate Tests
,”
ASME J. Tribol.
,
116
(
2
), pp.
352
359
.10.1115/1.2927233
22.
Kleynhans
,
G. F.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
949
956
.10.1115/1.2817079
23.
D'Souza
,
R. J.
, and
Childs
,
D. W.
,
2002
, “
A Comparison of Rotordynamic-Coefficient Predictions for Annular Honeycomb Gas Seals Using Three Different Friction-Factor Models
,”
ASME J. Tribol.
,
124
(
3
), pp.
524
529
.10.1115/1.1456086
24.
Soulas
,
T.
, and
Andres
,
L. S.
,
2007
, “
A Bulk Flow Model for Off-Centered Honeycomb Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
185
194
.10.1115/1.2227031
25.
Shin
,
Y. S.
, and
Childs
,
D. W.
,
2008
, “
The Impact of Real Gas Properties on Predictions of Static and Rotordynamic Properties of the Annular Gas Seals for Injection Compressors
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042504
.10.1115/1.2904891
26.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.10.1115/1.3451752
27.
Childs
,
D. W.
,
Kheireddin
,
B.
,
Phillips
,
S.
, and
Asirvatham
,
T. D.
,
2011
, “
Friction Factor Behavior From Flat-Plate Tests of Smooth and Hole-Pattern Roughened Surfaces With Supply Pressures up to 84 Bars
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092504
.10.1115/1.4002882
28.
Childs
,
D. W.
,
Authur
,
S.
, and
Mehta
,
N. J.
,
2013
, “
The Impact of Hole-Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(4), p. 042501.10.1115/1.4025888
29.
Childs
,
D. W.
,
Arthur
,
S.
, and
Mehta
,
N. J.
,
2014
, “
The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042501
.10.1115/1.4025888
30.
CFX Documentation
,
2013
, ANSYS Academic Research, Release 14.0.
You do not currently have access to this content.