Oil-free turbomachinery have emerged as one of the core technologies for the future green power generation systems as stand-alone systems or hybridized with high temperature fuel cells or solar systems. Oil-free technology allows compact, clean, and maintenance-free operation, and foil bearings are at the center of the technology. Since their first commercial applications in the air cycle machines and auxiliary power units in 1970s, significant improvement has been made to the computational models for rotordynamic behavior. However, many technical issues still remain unsolved or poorly understood, and one of them is thermal management. This paper presents transient three-dimensional thermohydrodynamic (3D THD) model of radial foil bearings to predict transient thermal behavior of the bearing-rotor system. The transient model involves transient energy equations applied to all the mechanical structures and gas film. The model was verified through extensive experimental measurements of transient thermal behavior of three-pad foil bearing for various cooling air pressures, external loads, and speeds. The predictions showed very good agreements with the experiments, and also the 3D THD model could predict potential thermal instability observed in the experimental measurements.

1.
Buck
,
R.
, and
Friedman
,
S.
, 2007, “
Solar-Assisted Small Solar Tower Trigeneration Systems
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
(
4
), pp.
349
354
.
2.
Agnew
,
G. D.
,
Bozzolo
,
M.
,
Moritz
,
R. R.
, and
Berenyi
,
S.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC
,”
Proceedings of the ASME Turbo Expo 2005 Power for Land, Sea, and Air
, Reno-Tahoe, NV, Jun. 6–9, ASME Paper No. GT2005-69122.
3.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
, 2008, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
0378-7753,
176
(
1
), pp.
229
239
.
4.
Tucker
,
D.
,
Lawson
,
R.
,
VanOsdol
,
J.
,
Kislear
,
J.
, and
Akinbobuyi
,
A.
, 2006, “
Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation Using Hardware Simulation
,”
Turbo Expo 2006
, ASME Paper No. GT2006-91291.
5.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillett
,
J. E.
, and
Lundberg
,
W. L.
, 2002, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
845
849
.
6.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
352
368
.
7.
Ku
,
C. -R.
, and
Heshmat
,
H.
, 1992, “
Compliant Foil Bearing Structural Stiffness Analysis: Part I—Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
0742-4787,
114
(
2
), pp.
394
400
.
8.
Kim
,
D.
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
354
364
.
9.
Lee
,
D.
,
Kim
,
Y.
, and
Kim
,
T.
, 2009, “
The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response
,”
STLE Tribol. Trans.
1040-2004,
52
(
2
), pp.
146
156
.
10.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
, 2007, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
1047
1057
.
11.
Lee
,
D.
, and
Kim
,
D.
, 2010, “
Five Degrees of Freedom Nonlinear Rotor Dynamics Model of a Rigid Rotor Supported by Multiple Airfoil Bearings
,”
Proceedings of the Eighth IFToMM International Conference on Rotordynamics
, Seoul, Korea, Sept. 12–15.
12.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2003, “
On the Frictional Damping Characterization of Compliant Bump Foils
,”
ASME J. Tribol.
0742-4787,
125
(
4
), pp.
804
813
.
13.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
(
2
), pp.
287
295
.
14.
Heshmat
,
H.
,
Walton
,
J. F.
, II
, and
Tomaszewski
,
M. J.
, 2005, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,”
Turbo Expo 2005
, ASME Paper No. GT2005-68404.
15.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
16.
Howard
,
S. A.
, and
DellaCorte
,
C.
, 2001, “
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
44
(
4
), pp.
657
663
.
17.
Radil
,
K.
,
DellaCorte
,
C.
, and
Zeszotek
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
1040-2004,
50
(
3
), pp.
319
327
.
18.
Kumar
,
M.
, and
Kim
,
D.
, 2008, “
Parametric Studies on Dynamic Performance of Hybrid Air Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
6
), p.
062501
.
19.
Kim
,
D.
, and
Park
,
S.
, 2009, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations
,”
Tribol. Int.
0301-679X,
42
(
3
), pp.
413
425
.
20.
Kim
,
D.
, and
Kumar
,
M.
, 2009, “
Load Capacity Measurements of Hydrostatic Bump Foil Bearing
,”
Turbo Expo 2009
, Orlando, FL, ASME Paper No. GT2009-59286.
21.
Kim
,
D.
, and
Lee
,
D.
, 2010, “
Design of Three-Pad Hybrid Air Foil Bearing and Experimental Investigation on Static Performance at Zero Running Speed
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
12
), p.
122504
.
22.
Lee
,
D.
, and
Kim
,
D.
, 2011, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
133
(
4
), p.
042501
.
23.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
508
516
.
24.
Radil
,
K.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
470
479
.
25.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
(
3
), pp.
566
571
.
26.
Peng
,
Z. C.
, and
Khonsari
,
M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
534
541
.
27.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2009, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
Turbo Expo 2009
, ASME Paper No. GT2009-59919.
28.
Lee
,
D.
, and
Kim
,
D.
, 2010, “
Thermo-Hydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor
,”
ASME J. Tribol.
0742-4787,
132
(
2
), p.
021704
.
29.
Kim
,
D.
,
Lee
,
D.
,
Kim
,
Y. C.
, and
Ahn
,
K. Y.
, 2010, “
Comparison of Thermo-Hydrodynamic Characteristics of Airfoil Bearings With Different Top Foil Geometries
,”
Proceedings of the Eighth IFToMM International Conference on Rotordynamics
, Seoul, Korea, Sept. 12–15.
30.
Sim
,
K.
, and
Kim
,
D.
, 2008, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
3
), p.
032502
.
31.
Sim
,
K.
, 2007, “
Rotordynamic and Thermal Analyses of Compliant Flexure Pivot Tilting Pad Gas Bearings
,” Ph.D. thesis, Texas A&M University, College Station, TX.
32.
Sadashiva
,
R. P.
, 2010, “
Experimental Investigation of Thermal Behaviour of Air Foil Bearings
,” MS thesis, The University of Texas at Arlington.
33.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Introduction to Heat Transfer
, 4th Ed.,
Wiley
,
New York
, pp.
516
519
.
34.
Lee
,
D.
, and
Kim
,
D.
, 2010, “
Three-Dimensional Thermo-Hydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing With Radially Arranged Bump Foils
,”
STLE Tribol. Trans.
1040-2004, in press.
35.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
, pp.
80
83
.
You do not currently have access to this content.