To obtain the foil bearing characteristics, the fluid film pressure must be coupled with the elastic deformation of the foil structure. However, all of the structural models thus far have simplified the foil structure without consideration of its three-dimensional shape. In this study, a finite element foil structural model is proposed that takes into consideration the three-dimensional foil shape. Using the proposed model, the deflections of interconnected bumps are compared to those of separated bumps, and the minimum film thickness determined from the proposed structural models is compared to those of previous models. In addition, the effects of the top foil and bump foil thickness on the foil bearing static performance are evaluated. The results of the study show that the three-dimensional shape of the foil structure should be considered for accurate predictions of foil bearing performances and that too thin top foil or bump foil thickness may lead to a significant decrease in the load capacity. In addition, the foil stiffness variation does not increase the load capacity much under a simple foil structure.

1.
Heshmat
,
H.
,
Shapiro
,
W.
, and
Gray
,
S.
, 1982, “
Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl Stability
,”
ASME J. Lubr. Technol.
0022-2305,
104
, pp.
149
156
.
2.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
3.
Heshmat
,
H.
, 2000, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
0742-4787,
122
, pp.
192
198
.
4.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
, 2004, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing
,”
Tribol. Int.
0301-679X,
37
, pp.
679
687
.
5.
Walowit
,
J. A.
, and
Anno
,
J. N.
, 1975,
Modern Development of Lubrication Mechanics
,
Applied Science
,
London
, Chap. 7.
6.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas Lubricated Foil Journal Bearings
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
647
655
.
7.
Peng
,
J. P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
, pp.
20
27
.
8.
Peng
,
J. P.
, and
Carpino
,
M.
, 1994, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
91
98
.
9.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J. P.
, 1994, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
43
50
.
10.
Carpino
,
M.
,
Peng
,
J. P.
, and
Medvetz
,
L. A.
, 1994, “
Misalignment in a Complete Shell Gas Foil Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
829
835
.
11.
Carpino
,
M.
, and
Talmage
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
560
565
.
12.
Carpino
,
M.
, and
Talmage
,
G.
, 2006, “
Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings With Corrugated Sub-Foils
,”
STLE Tribol. Trans.
1040-2004,
49
, pp.
400
409
.
13.
Peng
,
Z.-C.
, and
Khonsari
,
M. M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearings with Compressible Air Flow
,”
ASME J. Tribol.
0742-4787,
126
, pp.
542
546
.
14.
Kim
,
T. H.
, and
San Andres
,
L.
, 2007, “
Analysis of Advanced Gas Foil Bearings With Piecewise Linear Elastic Supports
,”
Tribol. Int.
0301-679X,
40
, pp.
1239
1245
.
15.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
, 2007, “
Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
0742-4787,
129
, pp.
75
83
.
16.
Kim
,
Daejong
,
Ezeka
,
C.
, and
Kumar
,
M.
, 2007, “
Revisit to Stiffness of Bump Foils in Air Foil Bearings
,”
Proceedings ASME/STLE International Joint Tribology Conference
,
San Diego
,
CA
, ASME Paper No. IJTC2007-44319.
17.
Kim
,
Daejong
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787,
129
, pp.
354
364
.
18.
San Andres
,
L.
, and
Kim
,
T. H.
, 2007, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,”
ASME Turbo Expo
,
Montreal
, ASME Paper No. GT2007-2724.
19.
Zienkiewicz
,
O. C.
, 1977,
The Finite element Method
,
McGraw-Hill
,
New York
, Chap. 10.
20.
Kikuchi
,
N.
, 1986,
Finite Element Methods in Mechanics
,
Cambridge University Press
,
Cambridge
, Chaps. 5 and 6.
21.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2002,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
, Chaps. 5 and 15.
22.
Lee
,
D. H.
,
Kim
,
Y. C.
, and
Kim
,
K. W.
, 2007, “
The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response
,”
Proceedings ASME/STLE International Joint Tribology Conference
,
San Diego
,
CA
, ASME Paper No. IJTC2007-44225.
23.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
, 2007, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
1047
1057
.
24.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
, 1978, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,” NASA CR-135368.
25.
Song
,
J. H.
, and
Kim
,
Daejong
, 2007, “
Foil Gas Bearing with Compression Springs: Analyses and Experiments
,”
ASME J. Tribol.
0742-4787,
129
, pp.
628
639
.
You do not currently have access to this content.