The objective of the present work is to investigate experimentally and numerically the influences of surface roughness, produced by typical machining processes, on friction performances in lubricated-point contacts. Prior to the full experimental investigation, a series of tests had been conducted to examine the experimental errors, resulting from repeated tests on the same specimen but at different tracks, with different amounts of lubricant supply, or after the sample reinstallation. Then, the effects of amplitude and texture of surface roughness on friction behavior are investigated in rotational and reciprocal-mode tests, respectively. The measured friction, averaged over the repeated tests and plotted as a function of sliding speed, shows Stribeck-type curves, which manifest the transition from full-film, mixed, to boundary lubrication. Results show that the roughness amplitude imposes a strong influence on the magnificence of friction and the route of lubrication transition. It is also observed that transverse roughness would give rise to a smaller friction coefficient than the longitudinal one under the same operating conditions. Moreover, the deterministic numerical solution of mixed lubrication has been extended to evaluate friction between rough surfaces over a wide range of lubrication regimes. The numerical simulation results are compared and agree very well with experiments.

1.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
1
), pp.
12
17
.
2.
Lubrecht
,
A. A.
,
ten Napel
,
W. E.
, and
Bosma
,
R.
, 1988, “
The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
110
(
3
), pp.
421
426
.
3.
Kweh
,
C. C.
,
Evans
,
H. P.
, and
Sindle
,
R. W.
, 1989, “
Micro-Elastohydrodynamic Lubrication of an Elliptical Contact With Transverse and 3-Dimensional Roughness
,”
Trans. ASME, J. Tribol.
0742-4787,
111
(
4
), pp.
577
584
.
4.
Ai
,
X.
, and
Cheng
,
H. S.
, 1994, “
The Influence of Moving Dent on EHL Point Contacts
,”
Tribol. Trans.
1040-2004,
37
(
2
), pp.
323
335
.
5.
Xu
,
G.
, and
Sadeghi
,
F.
, 1996, “
Thermal Analysis of Circular Contacts With Measured Roughness
,”
Trans. ASME, J. Tribol.
0742-4787,
118
(
3
), pp.
473
483
.
6.
Zhu
,
D.
, and
Ai
,
X.
, 1997, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
Trans. ASME, J. Tribol.
0742-4787,
119
(
3
), pp.
375
384
.
7.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
, 1999, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
Trans. ASME, J. Tribol.
0742-4787,
121
(
3
), pp.
481
492
.
8.
Hu
,
Y. Z.
, and
Zhu
,
D.
, 2000, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
122
(
1
), pp.
1
9
.
9.
Holmes
,
M. J. A.
,
Hughes
,
T. G.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2003, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method Part 1: Formulation and Validation
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
(
4
), pp.
289
303
.
10.
Holmes
,
M. J. A.
,
Hughes
,
T. G.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2003, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method Part 2: Results
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
217
(
4
), pp.
305
321
.
11.
Kumar
,
P.
,
Jain
,
S. C.
, and
Ray
,
S.
, 2001, “
Study of Surface Roughness Effects in Elastohydrodynamic Lubrication of Rolling Line Contacts Using a Deterministic Model
,”
Tribol. Int.
0301-679X,
34
(
10
), pp.
713
722
.
12.
Jacod
,
B.
,
Venner
,
C. H.
, and
Lugt
,
P. M.
, 2004, “
Influence of Longitudinal Roughness on Friction in EHL Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
3
), pp.
473
481
.
13.
Siripuram
,
R. B.
, and
Stephens
,
L. S.
, 2004, “
Effect of Deterministic Asperity Geometry on Hydrodynamic Lubrication
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
3
), pp.
527
534
.
14.
Geiger
,
M.
,
Roth
,
S.
, and
Becker
,
W.
, 1998, “
Influence of Laser-Produced Micro—Structures on the Tribological Behavior of Ceramics
,”
Surf. Coat. Technol.
0257-8972,
100–101
, pp.
17
22
.
15.
Wang
,
X. L.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
, 2001, “
The Effect of Laser Texturing of SiC Surface on the Critical Load for the Transition of Water Lubrication Mode from Hydrodynamic to Mixed
,”
Tribol. Int.
0301-679X,
34
(
10
), pp.
703
711
.
16.
Wakuda
,
M.
,
Yamauchi
,
Y.
,
Kanzaki
,
S.
, and
Yasuda
,
Y.
, 2003, “
Effect of Surface Texturing on Friction Reduction Between Ceramic and Steel Materials Under Lubricated Sliding Contact
,”
Wear
0043-1648,
254
(
3–4
), pp.
356
363
.
17.
Lovell
,
M. R.
, and
Deng
,
Z.
, 1999, “
Experimental Investigation of Sliding Friction Between Hard and Deformable Surfaces With Application to Manufacturing Processes
,”
Wear
0043-1648,
236
(
1–2
), pp.
117
127
.
18.
Li
,
X.
,
Rosen
,
B. G.
,
Amini
,
N.
, and
Nilsson
,
P. H.
, 2003, “
A Study on the Effect of Surface Topography on Rough Friction in Roller Contact
,”
Wear
0043-1648,
254
(
11
), pp.
1162
1169
.
19.
Lee
,
B. H.
,
Keum
,
Y. T.
, and
Wagoner
,
R. H.
, 2002, “
Modeling of the Friction Caused by Lubrication and Surface Roughness in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
130–131
, pp.
60
63
.
20.
Pettersson
,
U.
, and
Jacobson
,
S.
, 2007, “
Textured Surfaces for Improved Lubrication at High Pressure and Low Sliding Speed of Roller/Piston in Hydraulic Motors
,”
Tribol. Int.
0301-679X,
40
(
2
), pp.
355
359
.
21.
Sung
,
I. H.
,
Lee
,
H. S.
, and
Kim
,
D. E.
, 2003, “
Effect of Surface Topography on the Frictional Behavior at the Micro/Nano-Scale
,”
Wear
0043-1648,
254
(
10
), pp.
1019
1031
.
22.
Singh
,
R.
,
Melkote
,
S. N.
, and
Hashimoto
,
F.
, 2005, “
Frictional Response of Precision Finished Surfaces in Pure Sliding
,”
Wear
0043-1648,
258
(
10
), pp.
1500
1509
.
23.
Schmitz
,
T. L.
,
Action
,
J. E.
,
Ziegert
,
J. C.
, and
Sawyer
,
W. G.
, 2005, “
The Difficulty of Measuring Low Friction: Uncertainty Analysis for Friction Coefficient Measurements
,”
Trans. ASME, J. Tribol.
0742-4787,
127
(
3
), pp.
673
678
.
24.
Turaga
,
R.
,
Sekhar
,
A. S.
, and
Majumdar
,
B. C.
, 1999, “
The Effect of Roughness Parameter on the Performance of Hydrodynamic Journal Bearings With Rough Surfaces
,”
Tribol. Int.
0301-679X,
32
(
5
), pp.
231
236
.
25.
Bair
,
S.
, and
Winer
,
W. O.
, 1979, “
A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data
,”
ASME J. Lubr. Technol.
0022-2305,
101
(
3
), pp.
258
265
.
26.
Houpert
,
L.
,
Flamand
,
L.
, and
Berthe
,
D.
, 1981, “
Rheological and Thermal Effects in Lubricated E. H. D. Contacts
,”
ASME J. Lubr. Technol.
0022-2305,
103
(
4
), pp.
526
532
.
27.
Wikstrom
,
V.
, and
Hoglund
,
E.
, 1994, “
Investigation of Parameters Affecting the Limiting Shear Stress-Pressure Coefficient: A New Model Incorporating Temperature
,”
Trans. ASME, J. Tribol.
0742-4787,
116
(
3
), pp.
612
620
.
28.
Stahl
,
J.
, and
Jacobson
,
B. O.
, 2003, “
A Lubricant Model Considering Wall-Slip in EHL Line Contacts
,”
Trans. ASME, J. Tribol.
0742-4787,
125
(
3
), pp.
523
532
.
29.
Rabinowicz
,
E.
, 1980, “
Friction Especially Low Friction
,”
Proceedings of the International Conference on the Fundamentals of Tribology
,
N. P.
Suh
and
N.
Saka
, eds.,
MIT Press
,
Cambridge, MA
, pp.
351
364
.
30.
Hoglund
,
E.
, 1999, “
Influence of Lubricant Properties on Elastohydrodynamic Lubrication
,”
Wear
0043-1648,
232
(
2
), pp.
176
184
.
31.
Wang
,
W. Z.
,
Wang
,
S.
,
Shi
,
F. H.
,
Wang
,
Y. C.
,
Chen
,
H. B.
,
Wang
,
H.
, and
Hu
,
Y. Z.
, 2006, “
Simulations and Measurements of Sliding Friction Between Rough Surfaces in Point Contacts: From EHL to Boundary Lubrication
,”
Trans. ASME, J. Tribol.
0742-4787,
129
(
3
), pp.
495
501
.
You do not currently have access to this content.