The mechanical spacing between the slider and the disk has to be reduced to less than 5 nm in order to achieve an areal density of 1Tbitin2. Certain physical phenomena, such as those that can be caused by intermolecular and surface forces, which do not have a significant effect at higher flying heights, become more important at such low head-media separations. These forces are attractive for head-media separation as low as 0.5 nm, which causes a reduction in the mechanical spacing as compared to what would be the case without them. Single degree of freedom models have been used in the past to model these forces, and these models have predicted unstable flying in the sub-5-nm flying height range. Changes in the pitch and the roll angles were not accounted for in such models. A 3-DOF air bearing dynamic simulator model is used in this study to investigate the effect of the intermolecular forces on the static and dynamic performance of the air bearing sliders. It is seen that the intermolecular forces increase the level of flying height modulations at low flying heights, which in turn results in dynamic instability of the system similar to what has also been observed in experiments. The effect of initial vertical, pitch, and roll excitations on the static and dynamic flying characteristics of the slider in the presence of the intermolecular forces has also been investigated. A stiffness matrix is defined to characterize the stability in the vertical, pitch, and roll directions. The fly height diagrams are used to examine the multiple equilibriums that exist for low flying heights. Finally, a study was carried out to compare the performance of pico and femto designs based on the hysteresis observed during the touchdown-takeoff simulations.

1.
Wu
,
L.
, 2001, “
Physical modeling and numerical simulations of the slider air bearing problems in hard disk drives
,” Ph.D. dissertation, University of California, Berkeley.
2.
Wu
,
L.
, and
Bogy
,
D. B.
, 2002, “
Effect of the intermolecular forces on the flying attitude of sub-5 nm flying height air bearing sliders in hard disk drives
,”
ASME J. Tribol.
0742-4787,
124
(
3
), pp.
562
567
.
3.
Thornton
,
B. H.
, 2003, “
Head-Disk Interface Dynamics of Ultra-Low Flying Air Bearing Sliders for Hard-Disk Drive Applications
,” Ph.D. dissertation, University of California, Berkeley.
4.
Thornton
,
B. H.
, and
Bogy
,
D. B.
, 2003, “
Head-disk interface dynamic instability due to intermolecular forces
,”
IEEE Trans. Magn.
0018-9464,
39
(
5
), pp.
2420
2422
.
5.
Thornton
,
B. H.
, and
Bogy
,
D. B.
, 2003, “
Non-Linear Aspects of Air Bearing Modeling and Dynamic Spacing Modulation in Sub 5 nm Air Bearings for Hard Disk Drives
,"
IEEE Trans. Magn.
0018-9464,
39
, pp.
722
728
.
6.
Israelachvili
,
J. N.
, 1992,
Intermolecular and Surface Forces
, 2nd ed.,
Academic Press
, San Diego.
7.
Zhang
,
B.
, and
Nakajima
,
A.
, 2003, “
Possibility of surface force effect in slider air bearings of 100Gbit∕in 2 hard disks
,”
Tribol. Int.
0301-679X,
36
, pp.
291
296
.
8.
Li
,
J. H.
,
Liu
,
B.
,
Hua
,
W.
, and
Ma
,
Y. S.
, 2002, “
Effects of intermolecular forces on deep sub- 10 nm spaced sliders
,”
IEEE Trans. Magn.
0018-9464,
38
, pp.
2141
2143
.
9.
Bogy
,
D. B.
,
Fong
,
W.
,
Thornton
,
B. H.
,
Hong
,
Z.
,
Gross
,
H. M.
, and
Bhatia
,
C. S.
, 2002, “
Some tribology and mechanics issues for 100-Gb∕in∕sup 2/ hard disk drive
,”
IEEE Trans. Magn.
0018-9464,
38
(
5
), pp.
1879
1885
.
You do not currently have access to this content.