Abstract

The study emphasized the sintering behavior and tribo-mechanical properties of alumina ceramics by nano-TiO2 addition as a sintering aid. With increase in sintering temperature, the bulk density of alumina has increased gradually and optimized at 1600 °C. The optimizing effect of densification at 1600 °C is 98.25% by the addition of 1 wt% nano-TiO2. The maximum solid solubility of titania in alumina grains was at 1600 °C and causes optimization of densification by addition of 1 wt%. The excess addition of TiO2 formed low dense Al2TiO5, appearing as a secondary phase at grain boundaries and does not significantly improve densification. Fracture toughness increases and coefficient of friction decreases with the addition of nano-TiO2 in alumina matrix. The addition of 1 wt% nano-TiO2 improved hardness to 8.82% and reduces specific wear-rate to 45.56%. The addition of 1 wt% nano-TiO2 greatly influenced the microstructure of sintered Al2O3. The morphology was sharply changed from hexagonal columnar shape to order sub round orientation which also directly impact the tribo-mechanical properties of sintered alumina. The addition of 1 wt% substantially decreases wear track depth as observed by a 3D surface profilometer. Microscopic observation of the worn-out surface showed that wearing is majorly caused by plastic deformation and abrasion.

References

1.
Lahiri
,
S.
,
Sinhamahapatra
,
S.
,
Tripathi
,
H. S.
, and
Dana
,
K.
,
2016
, “
Rationalizing the Role of Magnesia and Titania on Sintering of α-Alumina
,”
Ceram. Int.
,
42
(
14
), pp.
15405
15413
.
2.
Jiang
,
D.
,
Thomson
,
K.
,
Kuntz
,
J.
,
Ager
,
J.
, and
Mukherjee
,
A.
,
2007
, “
Effect of Sintering Temperature on a Single-Wall Carbon Nanotube-Toughened Alumina-Based Nanocomposite
,”
Scr. Mater.
,
56
(
11
), pp.
959
962
.
3.
Thomson
,
K. E.
,
Jiang
,
D.
,
Yao
,
W.
,
Ritchie
,
R. O.
, and
Mukherjee
,
A. K.
,
2012
, “
Characterization and Mechanical Testing of Alumina-Based Nanocomposites Reinforced With Niobium and/or Carbon Nanotubes Fabricated by Spark Plasma Sintering
,”
Acta Mater.
,
60
(
2
), pp.
622
632
.
4.
Guidara
,
A.
,
Chaari
,
K.
, and
Bouaziz
,
J.
,
2012
, “
Effect of Titania Additive on Structural and Mechanical Properties of Alumina–Fluorapatite Composites
,”
J. Mater. Sci. Technol.
,
28
(
12
), pp.
1130
1136
.
5.
Dutta
,
A. K.
,
Chattopadhyaya
,
A. B.
, and
Ray
,
K. K.
,
2006
, “
Progressive Flank Wear and Machining Performance of Silver Toughened Alumina Cutting Tool Inserts
,”
Wear
,
261
(
7–8
), pp.
885
895
.
6.
Zhou
,
M.
,
Liu
,
W.
,
Wu
,
H.
,
Song
,
X.
,
Chen
,
Y.
,
Cheng
,
L.
,
He
,
F.
,
Chen
,
S.
, and
Wu
,
S.
,
2016
, “
Preparation of a Defect-Free Alumina Cutting Tool Via Additive Manufacturing Based on Stereolithography—Optimization of the Drying and Debinding Processes
,”
Ceram. Int.
,
42
(
10
), pp.
11598
11602
.
7.
Lee
,
S. W.
,
Morillo
,
C.
,
Lira-Olivares
,
J.
,
Kim
,
S. H.
,
Sekino
,
T.
,
Niihara
,
K.
, and
Hockey
,
B. J.
,
2003
, “
Tribological and Microstructural Analysis of Al2O3/TiO2 Nanocomposites to Use in the Femoral Head of Hip Replacement
,”
Wear
,
255
(
7–12
), pp.
1040
1044
.
8.
Morita
,
Y.
,
Nakata
,
K.
, and
Ikeuchi
,
K.
,
2003
, “
Wear Properties of Zirconia/Alumina Combination for Joint Prostheses
,”
Wear
,
254
(
1–2
), pp.
147
153
.
9.
Kurtz
,
S. M.
,
Kocagöz
,
S.
,
Arnholt
,
C.
,
Huet
,
R.
,
Ueno
,
M.
, and
Walter
,
W. L.
,
2014
, “
Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement
,”
J. Mech. Behav. Biomed. Mater.
,
31
, pp.
107
116
.
10.
Mert
,
S.
,
Mert
,
Ş.
, and
Sarıdemir
,
S.
,
2020
, “
An Investigation of Al2O3–ZrO2 Ceramic Composite-Coated Engine Parts Using Plasma Spray Method on a Diesel Engine
,”
Int. J. Ambient Energy
,
41
(
9
), pp.
1041
1048
.
11.
Basu
,
B.
, and
Kalin
,
M.
,
2011
,
Tribology of Ceramics and Composites: A Materials Science Perspective
,
John Wiley & Sons
,
Hoboken, NJ
.
12.
Pasaribu
,
H. R.
,
Sloetjes
,
J. W.
, and
Schipper
,
D. J.
,
2003
, “
Friction Reduction by Adding Copper Oxide Into Alumina and Zirconia Ceramics
,”
Wear
,
255
(
1–6
), pp.
699
707
.
13.
Elsen
,
S. R.
, and
Ramesh
,
T.
,
2016
, “
Analysis and Optimization of Dry Sliding Wear Characteristics of Zirconia Reinforced Alumina Composites Formed by Conventional Sintering Using Response Surface Method
,”
Int. J. Refract. Met. Hard Mater.
,
58
, pp.
92
103
.
14.
Kerkwijk
,
B.
,
García
,
M.
,
van Zyl
,
W. E.
,
Winnubst
,
L.
,
Mulder
,
E. J.
,
Schipper
,
D. J.
, and
Verweij
,
H.
,
2004
, “
Friction Behaviour of Solid Oxide Lubricants as Second Phase in α-Al2O3 and Stabilised ZrO2 Composites
,”
Wear
,
256
(
1–2
), pp.
182
189
.
15.
Haldar
,
P.
,
Kumar Bhattacharya
,
T.
, and
Modak
,
N.
,
2019
, “
Effect of Nano-Crystalline TiO2 Addition on Reciprocating Frictional Behaviour of Alumina Ceramics
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
653
(
1
), p.
012010
.
16.
Bagde
,
P.
,
Sapate
,
S. G.
,
Khatirkar
,
R. K.
, and
Vashishtha
,
N.
,
2018
, “
Friction and Abrasive Wear Behaviour of Al2O3–13TiO2 and Al2O3–13TiO2+Ni Graphite Coatings
,”
Tribol. Int.
,
121
, pp.
353
372
.
17.
Haldar
,
P.
,
Bhattacharya
,
T. K.
, and
Modak
,
N.
,
2019
, “The Effect of Normal Load and Sliding Frequency on the Reciprocating Friction Behavior of Nanocrystalline CuO-Based Alumina Ceramics,”
Advances in Micro and Nano Manufacturing and Surface Engineering. Lecture Notes on Multidisciplinary Industrial Engineering
,
M. S.
Shunmugam
, ed.,
Springer
,
Singapore
, pp.
673
681
.
18.
Chowdhury
,
S.
,
Dhara
,
D.
,
Chowdhury
,
S.
,
Haldar
,
P.
,
Chatterjee
,
K.
, and
Bhattacharya
,
T. K.
,
2021
, “
A Novel Approach Toward Microstructure Evaluation of Sintered Ceramic Materials Through Image Processing Techniques
,”
Int. J. Appl. Ceram. Technol.
,
18
(
3
), pp.
773
780
.
19.
Yamamoto
,
G.
,
Omori
,
M.
,
Yokomizo
,
K.
,
Hashida
,
T.
, and
Adachi
,
K.
,
2008
, “
Structural Characterization and Frictional Properties of Carbon Nanotube/Alumina Composites Prepared by Precursor Method
,”
Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
,
148
(
1–3
), pp.
265
269
.
20.
Kumar
,
R.
,
Chaubey
,
A. K.
,
Maity
,
T.
, and
Prashanth
,
K. G.
,
2018
, “
Mechanical and Tribological Properties of Al2O3-TiC Composite Fabricated by Spark Plasma Sintering Process With Metallic (Ni, Nb) Binders
,”
Metals (Basel)
,
8
(
1
), p.
50
.
21.
Jianxin
,
D.
,
Tongkun
,
C.
,
Zeliang
,
D.
,
Jianhua
,
L.
,
Junlong
,
S.
, and
Jinlong
,
Z.
,
2006
, “
Tribological Behaviors of Hot-Pressed Al2O3/TiC Ceramic Composites With the Additions of CaF2 Solid Lubricants
,”
J. Eur. Ceram. Soc.
,
26
(
8
), pp.
1317
1323
.
22.
Ahmad
,
I.
,
Kennedy
,
A.
, and
Zhu
,
Y. Q.
,
2010
, “
Wear Resistant Properties of Multi-Walled Carbon Nanotubes Reinforced Al2O3 Nanocomposites
,”
Wear
,
269
(
1–2
), pp.
71
78
.
23.
Mazumder
,
S.
,
Barad
,
B. B.
,
Show
,
B. K.
, and
Mandal
,
N.
,
2019
, “
Tribological Property Enhancement of 3Y-TZP Ceramic by the Combined Effect of CaF2 and MgO Phases
,”
Ceram. Int.
,
45
(
10
), pp.
13447
13455
.
24.
Ran
,
S.
,
Winnubst
,
L.
,
Blank
,
D. H. A.
,
Pasaribu
,
H. R.
,
Sloetjes
,
J.-W.
, and
Schipper
,
D. J.
,
2007
, “
Effect of Microstructure on the Tribological and Mechanical Properties of CuO-Doped 3Y-TZP Ceramics
,”
J. Am. Ceram. Soc.
,
90
(
9
), pp.
2747
2752
.
25.
Pasaribu
,
H. R.
,
Reuver
,
K. M.
,
Schipper
,
D. J.
,
Ran
,
S.
,
Wiratha
,
K. W.
,
Winnubst
,
A. J. A.
, and
Blank
,
D. H. A.
,
2005
, “
Environmental Effects on Friction and Wear of Dry Sliding Zirconia and Alumina Ceramics Doped With Copper Oxide
,”
Int. J. Refract. Met. Hard Mater.
,
23
(
4–6
), pp.
386
390
.
26.
Winkler
,
E. R.
,
Sarver
,
J. F.
, and
Cutler
,
I. B.
,
1966
, “
Solid Solution of Titanium Dioxide in Aluminum Oxide
,”
J. Am. Ceram. Soc.
,
49
(
12
), pp.
634
637
.
27.
Freudenberg
,
B.
, and
Mocellin
,
A.
,
1987
, “
Aluminum Titanate Formation by Solid-State Reaction of Fine Al2O3 and TiO2 Powders
,”
J. Am. Ceram. Soc.
,
70
(
1
), pp.
33
38
.
28.
Runyan
,
J. L.
, and
Bennison
,
S. J.
,
1991
, “
Fabrication of Flaw-Tolerant Aluminum-Titanate-Reinforced Alumina
,”
J. Eur. Ceram. Soc.
,
7
(
2
), pp.
93
99
.
29.
Lawn
,
B. R.
,
Padture
,
N. P.
,
Braun
,
L. M.
, and
Bennison
,
S. J.
,
1993
, “
Model for Toughness Curves in Two-Phase Ceramics: I, Basic Fracture Mechanics
,”
J. Am. Ceram. Soc.
,
76
(
9
), pp.
2235
2240
.
30.
Padture
,
N. P.
,
Runyan
,
J. L.
,
Bennison
,
S. J.
,
Braun
,
L. M.
, and
Lawn
,
B. R.
,
1993
, “
Model for Toughness Curves in Two-Phase Ceramics: II, Microstructural Variables
,”
J. Am. Ceram. Soc.
,
76
(
9
), pp.
2241
2247
.
31.
Wang
,
Y.
,
Yang
,
Y.
,
Zhao
,
Y.
,
Tian
,
W.
,
Bian
,
H.
, and
He
,
J.
,
2009
, “
Sliding Wear Behaviors of In Situ Alumina/Aluminum Titanate Ceramic Composites
,”
Wear
,
266
(
11–12
), pp.
1051
1057
.
32.
Patterson
,
A. L.
,
1939
, “
The Scherrer Formula for X-Ray Particle Size Determination
,”
Phys. Rev.
,
56
(
10
), pp.
978
982
.
33.
Lawn
,
B. R.
, and
Swain
,
M. V.
,
1975
, “
Microfracture Beneath Point Indentations in Brittle Solids
,”
J. Mater. Sci.
,
10
(
1
), pp.
113
122
.
34.
Evans
,
A. G.
, and
Charles
,
E. A.
,
1976
, “
Fracture Toughness Determinations by Indentation
,”
J. Am. Ceram. Soc.
,
59
(
7–8
), pp.
371
372
.
35.
Haldar
,
P.
,
Bhattacharya
,
T. K.
, and
Modak
,
N.
,
2021
, “
Effect of Nano CuO Addition on the Tribo-Mechanical Behavior of Alumina Ceramics in Non-Conformal Contact
,”
Int. J. Appl. Ceram. Technol.
,
18
(
1
), pp.
110
118
.
36.
Ajayi
,
O. O.
,
Erdemir
,
A.
,
Lee
,
R. H.
, and
Nichols
,
F. A.
,
1993
, “
Sliding Wear of Silicon Carbide-Titanium Boride Ceramic-Matrix Composite
,”
J. Am. Ceram. Soc.
,
76
(
2
), pp.
511
517
.
37.
Johnson
,
K. L.
,
1985
, Contact Mechanics,
Cambridge University Press
,
Cambridge
.
38.
Sakaguchi
,
S.
,
Murayama
,
N.
,
Kodama
,
Y.
, and
Wakai
,
F.
,
1991
, “
The Poisson’s Ratio of Engineering Ceramics at Elevated Temperature
,”
J. Mater. Sci. Lett.
,
10
(
5
), pp.
282
284
.
39.
Hamilton
,
G. M.
,
1983
, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
197
(
1
), pp.
53
59
.
40.
Zhang
,
M.
,
Wang
,
S.
,
Li
,
Z.
,
Liu
,
C.
,
Miao
,
R.
,
He
,
G.
,
Zhao
,
M.
, et al
,
2019
, “
Hydrothermal Synthesis of MoS2 Nanosheet Loaded TiO2 Nanoarrays for Enhanced Visible Light Photocatalytic Applications
,”
RSC Adv.
,
9
(
6
), pp.
3479
3485
.
41.
Chen
,
G.
,
Chen
,
J.
,
Song
,
Z.
,
Srinivasakannan
,
C.
, and
Peng
,
J.
,
2014
, “
A New Highly Efficient Method for the Synthesis of Rutile TiO2
,”
J. Alloys Compd.
,
585
, pp.
75
77
.
42.
Ola
,
O.
, and
Maroto-Valer
,
M. M.
,
2016
, “
Synthesis, Characterization and Visible Light Photocatalytic Activity of Metal Based TiO2 Monoliths for CO2 Reduction
,”
Chem. Eng. J.
,
283
, pp.
1244
1253
.
43.
Slepetys
,
R. A.
, and
Vaughan
,
P. A.
,
1969
, “
Solid Solution of Aluminum Oxide in Rutile Titanium Dioxide
,”
J. Phys. Chem.
,
73
(
7
), pp.
2157
2162
.
44.
Khaskhoussi
,
A.
,
Calabrese
,
L.
,
Bouaziz
,
J.
, and
Proverbio
,
E.
,
2017
, “
Effect of TiO2 Addition on Microstructure of Zirconia/Alumina Sintered Ceramics
,”
Ceram. Int.
,
43
(
13
), pp.
10392
10402
.
45.
Manshor
,
H.
,
Md Aris
,
S.
,
Azhar
,
A. Z. A.
,
Abdullah
,
E. C.
, and
Ahmad
,
Z. A.
,
2015
, “
Effects of TiO2 Addition on the Phase, Mechanical Properties, and Microstructure of Zirconia-Toughened Alumina Ceramic Composite
,”
Ceram. Int.
,
41
(
3
), pp.
3961
3967
.
46.
Sobhani
,
M.
,
Ebadzadeh
,
T.
, and
Rahimipour
,
M. R.
,
2014
, “
Formation and Densification Behavior of Reaction Sintered Alumina–20 wt% Aluminium Titanate Nano-Composites
,”
Int. J. Refract. Met. Hard Mater.
,
47
, pp.
49
53
.
47.
Özçatal
,
M.
, and
Serhat Başpınar
,
M.
,
2020
, “
The Effects of Temperature and Additives on the Microstructure of Al2TiO5
,”
Pamukkale Univ. J. Eng. Sci.
,
26
(
4
), pp.
594
598
.
48.
Uribe
,
R.
, and
Baudín
,
C.
,
2003
, “
Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina
,”
J. Am. Ceram. Soc.
,
86
(
5
), pp.
846
850
.
49.
Liang
,
K. M.
,
Orange
,
G.
, and
Fantozzi
,
G.
,
1990
, “
Evaluation by Indentation of Fracture Toughness of Ceramic Materials
,”
J. Mater. Sci.
,
25
(
1
), pp.
207
214
.
50.
Kingery
,
W. D.
,
Bowen
,
H. K.
,
Uhlmann
,
D. R.
, and
Frieser
,
R.
,
1977
, “
Introduction to Ceramics
,”
J. Electrochem. Soc.
,
124
(
3
), pp.
152C
152C
.
51.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2005
, “
Mechanical Behavior of Zirconia/Alumina Composites
,”
Ceram. Int.
,
31
(
1
), pp.
39
46
.
52.
Wang
,
C.-J.
, and
Huang
,
C.-Y.
,
2008
, “
Effect of TiO2 Addition on the Sintering Behavior, Hardness and Fracture Toughness of an Ultrafine Alumina
,”
Mater. Sci. Eng. A
,
492
(
1–2
), pp.
306
310
.
53.
Sobhani
,
M.
,
Ebadzadeh
,
T.
, and
Rahimipour
,
M. R.
,
2016
, “
A Comparison Study on the R-Curve Behavior of Alumina/Aluminum Titanate Composites Prepared With Different TiO2 Powders
,”
Theor. Appl. Fract. Mech.
,
85
(
Part B
), pp.
159
163
.
54.
Yang
,
Y.
,
Wang
,
Y.
,
Tian
,
W.
,
Wang
,
Z.
,
Zhao
,
Y.
,
Wang
,
L.
, and
Bian
,
H.
,
2009
, “
Reinforcing and Toughening Alumina/Titania Ceramic Composites With Nano-Dopants From Nanostructured Composite Powders
,”
Mater. Sci. Eng. A
,
508
(
1–2
), pp.
161
166
.
55.
Parchovianský
,
M.
,
Balko
,
J.
,
Švančárek
,
P.
,
Sedláček
,
J.
,
Dusza
,
J.
,
Lofaj
,
F.
, and
Galusek
,
D.
,
2017
, “
Mechanical Properties and Sliding Wear Behaviour of Al2O3-SiC Nanocomposites With 3–20 vol% SiC
,”
J. Eur. Ceram. Soc.
,
37
(
14
), pp.
4297
4306
.
56.
Ananthakumar
,
S.
,
Jayasankar
,
M.
, and
Warrier
,
K. G. K.
,
2006
, “
Microstructural, Mechanical and Thermal Characterisation of Sol–Gel-Derived Aluminium Titanate–Mullite Ceramic Composites
,”
Acta Mater.
,
54
(
11
), pp.
2965
2973
.
57.
Khanna
,
R.
, and
Basu
,
B.
,
2006
, “
Low Friction and Severe Wear of Alumina in Cryogenic Environment: A First Report
,”
J. Mater. Res.
,
21
(
4
), pp.
832
843
.
58.
Saito
,
H.
,
Iwabuchi
,
A.
, and
Shimizu
,
T.
,
2006
, “
Effects of Co Content and WC Grain Size on Wear of WC Cemented Carbide
,”
Wear
,
261
(
2
), pp.
126
132
.
59.
Sasaki
,
S.
,
1989
, “
The Effects of the Surrounding Atmosphere on the Friction and Wear of Alumina, Zirconia, Silicon Carbide and Silicon Nitride
,”
Wear
,
134
(
1
), pp.
185
200
.
60.
Saka
,
N.
,
Liou
,
M. J.
, and
Suh
,
N. P.
,
1984
, “
The Role of Tribology in Electrical Contact Phenomena
,”
Wear
,
100
(
1–3
), pp.
77
105
.
61.
Pirso
,
J.
,
Viljus
,
M.
,
Juhani
,
K.
, and
Letunovitš
,
S.
,
2009
, “
Two-Body Dry Abrasive Wear of Cermets
,”
Wear
,
266
(
1–2
), pp.
21
29
.
62.
Skopp
,
A.
,
Woydt
,
M.
, and
Habig
,
K.-H.
,
1990
, “
Unlubricated Sliding Friction and Wear of Various Si3N4 Pairs Between 22 deg and 1000 °C
,”
Tribol. Int.
,
23
(
3
), pp.
189
199
.
63.
Lin
,
X.
,
Zeng
,
Y.
,
Ding
,
C.
, and
Zhang
,
P.
,
2004
, “
Effects of Temperature on Tribological Properties of Nanostructured and Conventional Al2O3–3 wt% TiO2 Coatings
,”
Wear
,
256
(
11–12
), pp.
1018
1025
.
You do not currently have access to this content.