Abstract

CoCrMo alloy containing copper element can significantly improve the antibacterial property of the alloy. However, most metal implants often fail due to the presence of corrosion and wear. In this work, the electrochemical and tribocorrosion properties of CoCrMo, CoCrMo–2Cu, and CoCrMo–4Cu alloys at a potential of −0.45 V and 0 V condition in Hank’s/Saliva/α-minimum essential medium (MEM) containing 10% FBS solutions were studied to reveal the effect of Cu addition on the tribocorrosion properties of Co-based alloys. The results showed that the addition of copper element reduced the corrosion resistance and wear resistance of Co-based alloy. As for solutions, α-MEM containing 10% fetal bovine serum shows lubrication function. Based on the calculated results, it was pointed out that the tribocorrosion behavior of CoCrMo and CoCrMo–Cu alloy was mainly controlled by the mechanical wear.

References

1.
Mancha
,
H.
,
Carranza
,
E.
,
Escalante
,
J. I.
,
Mendoza
,
G.
,
Mendez
,
M.
,
Cepeda
,
F.
, and
Valdes
,
E.
,
2001
, “
M23C6 Carbide Dissolution Mechanisms During Heat Treatment of ASTM f-75 Implant Alloys
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
32
(
4
), pp.
979
984
. 10.1007/s11661-001-0355-8
2.
Mcginley
,
E. L.
,
Fleming
,
G. J.
, and
Moran
,
G. P.
,
2011
, “
Development of a Discriminatory Biocompatibility Testing Model for Non-precious Dental Casting Alloys
,”
Dent. Mater.
,
27
(
12
), pp.
1295
1306
. 10.1016/j.dental.2011.09.013
3.
Syrett
,
B. C.
,
Acharya
,
A.
, and
ASTM Committee F-4 on Medical and Surgical Materials and Devices
,
1979
,
Corrosion and Degradation of Implant Materials: a Symposium
,
J. B.
Wheeler
,
H. M.
Hoersch
,
E. J.
McGlinchey
, and
H.
Mahy
, eds.,
ASTM
,
Philadelphia, PA
, p.
356
.
4.
Gulati
,
K.
,
Ramakrishnan
,
S.
,
Aw
,
M. S.
,
Atkins
,
G. J.
,
Findlay
,
D. M.
, and
Losic
,
D.
,
2012
, “
Biocompatible Polymer Coating of Titania Nanotube Arrays for Improved Drug Elution and Osteoblast Adhesion
,”
Acta Biomater.
,
8
(
1
), pp.
449
456
. 10.1016/j.actbio.2011.09.004
5.
Darouiche
,
R. O.
,
2004
, “
Treatment of Infections Associated With Surgical Implants
,”
N. Engl. J. Med.
,
350
(
14
), pp.
1422
1429
. 10.1056/NEJMra035415
6.
Chung
,
H. J.
,
Lin
,
A. T. L.
,
Huang
,
E. Y. H.
,
Lin
,
C. C.
,
Chen
,
T. J.
, and
Chen
,
K. K.
,
2013
, “
Extracorporeal Shock Wave Lithotripsy Is an Independent Risk Factor for Hypertension: A Nation-Wide Population-Based and With an 8-Year Follow-up Study
,”
J. Urol.
,
189
(
4
), pp.
E628
E628
.
7.
Zimmerli
,
W.
,
Trampuz
,
A.
, and
Ochsner
,
P. E.
,
2004
, “
Current Concepts: Prosthetic-Joint Infections
,”
N. Engl. J. Med.
,
351
(
16
), pp.
1645
1654
. 10.1056/NEJMra040181
8.
Grass
,
G.
,
Rensing
,
C.
, and
Solioz
,
M.
,
2011
, “
Metallic Copper as an Antimicrobial Surface
,”
Appl. Environ. Microbiol.
,
77
(
5
), pp.
1541
1547
. 10.1128/AEM.02766-10
9.
Santo
,
C. E.
,
Taudte
,
N.
,
Nies
,
D. H.
, and
Grass
,
G.
,
2008
, “
Contribution of Copper Ion Resistance to Survival of Escherichia Coli on Metallic Copper Surfaces
,”
Appl. Environ. Microbiol.
,
74
(
4
), pp.
977
986
. 10.1128/AEM.01938-07
10.
Zhang
,
E. L.
,
Fu
,
S.
,
Wang
,
R. X.
,
Li
,
H. X.
,
Liu
,
Y.
,
Ma
,
Z. Q.
,
Liu
,
G. K.
,
Zhu
,
C. S.
,
Qin
,
G. W.
, and
Chen
,
D. F.
,
2019
, “
Role of Cu Element in Biomedical Metal Alloy Design
,”
Rare Met.
,
38
(
6
), pp.
476
494
. 10.1007/s12598-019-01245-y
11.
Wang
,
X. Y.
,
Dong
,
H.
,
Liu
,
J.
,
Qin
,
G. W.
,
Chen
,
D. F.
, and
Zhang
,
E.
,
2019
, “
In vivo Antibacterial Property of Ti-Cu Sintered Alloy Implant
,”
Mater. Sci. Eng. C-Mater. Biol. Appl.
,
100
, pp.
38
47
. 10.1016/j.msec.2019.02.084
12.
Es-Souni
,
M.
,
Fischer-Brandies
,
H.
, and
Es-Souni
,
M.
,
2003
, “
On the In vitro Biocompatibility of Elgiloy, a Co-Based Alloy, Compared to Two Titanium Alloys
,”
J. Orofac. Orthop.
,
64
(
1
), pp.
16
26
. 10.1007/s00056-003-0235-5
13.
Rajasekaran
,
N.
, and
Mohan
,
S.
,
2012
, “
A Comparative Study of Cu-Co Alloys Versus Cu/Co Multilayered Coatings Obtained by Electrodeposition Techniques
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
D577
D581
. 10.1149/2.023210jes
14.
Zhang
,
E. L.
, and
Liu
,
C.
,
2016
, “
A New Antibacterial Co-Cr-Mo-Cu Alloy: Preparation, Biocorrosion, Mechanical and Antibacterial Property
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
69
, pp.
134
143
. 10.1016/j.msec.2016.05.028
15.
Ziche
,
M.
,
Jones
,
J.
, and
Gullino
,
P. M.
,
1982
, “
Role of Prostaglandin E1 and Copper in Angiogenesis
,”
J. Natl. Cancer Inst.
,
69
(
2
), pp.
475
482
.
16.
Singh
,
D. P.
,
Malik
,
V.
,
Kumar
,
R.
, and
Kumar
,
K.
,
2010
, “
Template Synthesis of Macrocyclic Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II): Spectroscopic, Antibacterial and Antifungal Studies
,”
J. Serb. Chem. Soc.
,
75
(
6
), pp.
763
772
. 10.2298/JSC090901050S
17.
Lee
,
H. M.
,
Patel
,
V.
,
Shyur
,
L. F.
, and
Lee
,
W. L.
,
2016
, “
Copper Supplementation Amplifies the Anti-tumor Effect of Curcumin in Oral Cancer Cells
,”
Phytomedicine
,
23
(
12
), pp.
1535
1544
. 10.1016/j.phymed.2016.09.005
18.
Sen
,
C. K.
,
Khanna
,
S.
,
Venojarvi
,
M.
,
Trikha
,
P.
,
Ellison
,
E. C.
,
Hunt
,
T. K.
, and
Roy
,
S.
,
2002
, “
Copper-Induced Vascular Endothelial Growth Factor Expression and Wound Healing
,”
Am. J. Phys. Heart Circ. Phys.
,
282
(
5
), pp.
H1821
H1827
. 10.1152/ajpheart.01015.2001
19.
Feng
,
W. K.
,
Ye
,
F.
,
Xue
,
W. L.
,
Zhou
,
Z. X.
, and
Kang
,
Y. J.
,
2009
, “
Copper Regulation of Hypoxia-Inducible Factor-1 Activity
,”
Mol. Pharmacol.
,
75
(
1
), pp.
174
182
. 10.1124/mol.108.051516
20.
Huang
,
Y.
,
Zhang
,
X. J.
,
Mao
,
H. H.
,
Li
,
T. T.
,
Zhao
,
R. L.
,
Yan
,
Y. J.
, and
Pang
,
X. F.
,
2015
, “
Osteoblastic Cell Responses and Antibacterial Efficacy of Cu/Zn Co-Substituted Hydroxyapatite Coatings on Pure Titanium Using Electrodeposition Method
,”
RSC Adv.
,
5
(
22
), pp.
17076
17086
. 10.1039/C4RA12118J
21.
Zhang
,
J. C.
,
Li
,
Y. P.
,
Yang
,
K. N.
, and
Hao
,
X. H.
,
2010
, “
Effects of Cu2+ and Cu+ on the Proliferation, Differentiation and Calcification of Primary Mouse Osteoblasts In vitro
,”
Chin. J. Inorg. Chem.
,
26
(
12
), pp.
2251
2258
.
22.
Sinnett-Jones
,
P. E.
,
Wharton
,
J. A.
, and
Wood
,
R. J. K.
,
2005
, “
Micro-abrasion-corrosion of a CoCrMo Alloy in Simulated Artificial Hip Joint Environments
,”
Wear
,
259
(
7–12
), pp.
898
909
. 10.1016/j.wear.2005.02.045
23.
Kawalec
,
J. S.
,
Brown
,
S. A.
,
Payer
,
J. H.
, and
Merritt
,
K.
,
1995
, “
Mixed-Metal Fretting Corrosion of Ti6al4v and Wrought Cobalt Alloy
,”
J. Biomed. Mater. Res.
,
29
(
7
), pp.
867
873
. 10.1002/jbm.820290712
24.
Sivakumar
,
M.
,
Mudali
,
U. K.
, and
Rajeswari
,
S.
,
1995
, “
Investigation of Failures in Stainless-Steel Orthopedic Implant Devices—Pit-Induced Fatigue Cracks
,”
J. Mater. Sci. Lett.
,
14
(
2
), pp.
148
151
. 10.1007/BF00456573
25.
Zhang
,
L.
,
Guo
,
J. Q.
,
Yan
,
T.
, and
Han
,
Y.
,
2018
, “
Fibroblast Responses and Antibacterial Activity of Cu and Zn Co-doped TiO2 for Percutaneous Implants
,”
Appl. Surf. Sci.
,
434
, pp.
633
642
. 10.1016/j.apsusc.2017.10.169
26.
Bozic
,
K. J.
,
Kurtz
,
S. M.
,
Lau
,
E.
,
Ong
,
K.
,
Chiu
,
V.
,
Vail
,
T. P.
,
Rubash
,
H. E.
, and
Berry
,
D. J.
,
2010
, “
The Epidemiology of Revision Total Knee Arthroplasty in the United States
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
45
51
. 10.1007/s11999-009-0945-0
27.
Ponthiaux
,
P.
,
Wenger
,
F.
,
Drees
,
D.
, and
Celis
,
J. P.
,
2004
, “
Electrochemical Techniques for Studying Tribocorrosion Processes
,”
Wear
,
256
(
5
), pp.
459
468
. 10.1016/S0043-1648(03)00556-8
28.
Iwabuchi
,
A.
,
Lee
,
J. W.
, and
Uchidate
,
M.
,
2007
, “
Synergistic Effect of Fretting Wear and Sliding Wear of Co-Alloy and Ti-Alloy in Hanks’ Solution
,”
Wear
,
263
(
1–6
), pp.
492
500
. 10.1016/j.wear.2007.01.102
29.
He
,
F. J.
,
Fang
,
Y. Z.
, and
Jin
,
S. J.
,
2014
, “
The Study of Corrosion-Wear Mechanism of Ni-W-P Alloy
,”
Wear
,
311
(
1–2
), pp.
14
20
.
30.
Giacomelli
,
F. C.
,
Giacomelli
,
C.
, and
Spinelli
,
A.
,
2004
, “
Behavior of a Co-Cr-Mo Biomaterial in Simulated Body Fluid Solutions Studied by Electrochemical and Surface Analysis Techniques
,”
J. Braz. Chem. Soc.
,
15
(
4
), pp.
541
547
. 10.1590/S0103-50532004000400016
31.
Stack
,
M. M.
, and
Abdulrahman
,
G. H.
,
2010
, “
Mapping Erosion-Corrosion of Carbon Steel in oil Exploration Conditions: Some new Approaches to Characterizing Mechanisms and Synergies
,”
Tribol. Int.
,
43
(
7
), pp.
1268
1277
. 10.1016/j.triboint.2010.01.005
32.
Meozzi
,
M.
,
2011
, “
On the Local Description of Wear-Induced Volume Loss and Shape Changes for Engineering Surfaces
,”
Meccanica
,
46
(
3
), pp.
509
521
. 10.1007/s11012-010-9299-7
33.
Honda
,
T.
,
Otsubo
,
S.
, and
Iwai
,
Y.
,
2003
, “
Optical Visualization of Wear Process and In-situ Monitoring of the Volume Loss Using Live Observation System (LOS)
,”
J. Jpn. Soc. Tribol.
,
48
(
12
), pp.
990
997
.
34.
Sun
,
Z. B.
,
Hu
,
Z. D.
,
Zong
,
X. P.
,
Liu
,
J.
,
Yang
,
S.
,
Li
,
X. Y.
, and
Zhu
,
Y. M.
,
2001
, “
Liquid Separation Behavior of Cu-Co Alloy During Isothermal Process at High Temperature
,”
Trans. Nonferrous Met. Soc. China
,
11
(
6
), pp.
831
834
.
35.
Zhang
,
E. L.
,
Ge
,
Y.
, and
Qin
,
G. W.
,
2018
, “
Hot Deformation Behavior of an Antibacterial Co-29Cr-6Mo-1.8Cu Alloy and Its Effect on Mechanical Property and Corrosion Resistance
,”
J. Mater. Sci. Technol.
,
34
(
3
), pp.
523
533
. 10.1016/j.jmst.2016.09.025
36.
Mahshid
,
S. S.
, and
Dolati
,
A.
,
2010
, “
An Investigation on the Electrochemical Behavior of the Co/Cu Multilayer System
,”
J. Nanosci. Nanotechnol.
,
10
(
9
), pp.
5964
5970
. 10.1166/jnn.2010.2593
37.
Huang
,
C. H.
,
Lai
,
J. J.
,
Huang
,
J. C.
,
Lin
,
C. H.
, and
Jang
,
J. S. C.
,
2016
, “
Effects of Cu Content on Electrochemical Response in Ti-Based Metallic Glasses Under Simulated Body Fluid
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
62
, pp.
368
376
. 10.1016/j.msec.2016.01.080
38.
Ozturk
,
O.
,
Arebat
,
R. A. M.
,
Nefrow
,
A. R. A.
,
Bulut
,
F.
,
Guducu
,
G.
,
Asikuzun
,
E.
, and
Celik
,
S.
,
2019
, “
Investigation of Structural, Superconducting and Mechanical Properties of Co/Cu Substituted YBCO-358 Ceramic Composites
,”
J. Mater. Sci.-Mater. Electron.
,
30
(
8
), pp.
7400
7409
. 10.1007/s10854-019-01053-1
39.
Yang
,
W.
,
Chen
,
S. H.
,
Yu
,
H.
,
Li
,
S.
,
Liu
,
F.
, and
Yang
,
G. C.
,
2012
, “
Effects of Liquid Separation on the Microstructure Formation and Hardness Behavior of Undercooled Cu-Co Alloy
,”
Appl. Phys. A Mater. Sci. Process.
,
109
(
3
), pp.
665
671
. 10.1007/s00339-012-7090-4
40.
Yuasa
,
M.
,
Nakano
,
H.
,
Nakamoto
,
Y.
, and
Mabuchi
,
M.
,
2009
, “
Effect of Annealing on Mechanical Properties and Nanoscale Lamellar Structure in Co-Cu Alloy
,”
Mater. Trans.
,
50
(
3
), pp.
570
578
. 10.2320/matertrans.MRA2008367
41.
Henriques
,
B.
,
Soares
,
D.
, and
Silva
,
F. S.
,
2012
, “
Microstructure, Hardness, Corrosion Resistance and Porcelain Shear Bond Strength Comparison Between Cast and Hot Pressed CoCrMo Alloy for Metal-Ceramic Dental Restorations
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
83
92
. 10.1016/j.jmbbm.2012.03.015
42.
Mindivan
,
F.
,
Yildirim
,
M. P.
,
Bayindir
,
F.
, and
Mindivan
,
H.
,
2016
, “
Corrosion and Tribocorrosion Behavior of Cast and Machine Milled Co-Cr Alloys for Biomedical Applications
,”
Acta Phys. Pol. A
,
129
(
4
), pp.
701
704
. 10.12693/APhysPolA.129.701
43.
Pontes
,
J. R.
,
Alves
,
A. C.
,
Toptan
,
F.
,
Galo
,
R.
, and
Ariza
,
E.
,
2016
, “
Effect of Commercial Mouthwashes on the Corrosion and Tribocorrosion Behaviour of a Co-Cr Dental Casting Alloy
,”
Mater. Corros.-Werkstoffe Und Korrosion
,
67
(
3
), pp.
305
311
. 10.1002/maco.201508396
44.
Danaila
,
E.
,
Benea
,
L.
, and
Ponthiaux
,
P.
,
2015
, “
Tribocorrosion Performance of Co/UHMWPE Composite Biocoatings Compared to Pure Co Coatings in a Simulated Physiological Solution
,”
Proceedings of E-Health and Bioengineering Conference (EHB)
,
Iasi, Romania
,
Nov. 21–23.
45.
Yan
,
Y.
,
Neville
,
A.
,
Dowson
,
D.
, and
Williams
,
S.
,
2006
, “
Tribocorrosion in Implants—Assessing High Carbon and Low Carbon Co-Cr-Mo Alloys by In situ Electrochemical Measurements
,”
Tribol. Int.
,
39
(
12
), pp.
1509
1517
. 10.1016/j.triboint.2006.01.016
You do not currently have access to this content.