Alloy characteristics that relate directly to wear resistance are much sought after, but elusive. Attempts have been made to correlate wear resistance with mechanical and physical properties, including hardness, but only with limited success. During the course of this investigation, cast, wrought, and hard facing wear alloys were processed using various casting, consolidation and deposition techniques and evaluated using laboratory sand abrasion wear tests, and metal-to-metal (adhesive) wear tests. In general, superior abrasive wear resistance was obtained with those processing conditions that produced microstructures which contained coarse carbide morphologies. No general relationship between hardness and abrasive or adhesive wear was found in this processing study. Little effect of processing, structure or hardness was observed on metal-to-metal wear. Where chemical similarity and common structural condition between the commercial alloys tested allows comment on chemical effects, carbon appeared to be the most effective variable; particularly with abrasive wear where resistance increased with increasing carbon level and volume percent of carbide phases present.

This content is only available via PDF.
You do not currently have access to this content.