Downloaded from http://asmedc.silverchair.com/tribology/article-pdf/99/2/294/5920245/294_1.pdf by guest on 20 April 2024

J. W. Kannel²

EHD film thickness measurement techniques are basically in three categories based on the property of the film being measured.

- (1) Transmission techniques (i.e., the X-ray technique)
- (2) Electrical properties technique (capacitance inductance, etc.)
 - (3) The optical interfermetric technique.

Since each technique has its own idiosyncrasies, it would be nice to have a new approach for these measurements.

Unfortunately, however, I do not feel the authors have, as yet, advanced their idea to the extent of really being able to evaluate the concept. There are certainly pitfalls to the laser-diffraction technique such as associated with the wavelength of the source. Any evaluation of these problems certainly require measurements under rolling contact. The limit of 7.62 μ m given by the authors is certainly very

restrictive. Until actual (rolling contact) tests are conducted, it is difficult to appraise their approach for measurement of EHD lubrication films.

Authors' Closure

The authors thank Mr. Kannel for his discussion, and would certainly agree with his comments regarding the application of the laser-diffraction techniques to measurement of typical EHD lubrication films. Nevertheless, it has been possible to describe some of the parameters controlling the formation of a liquid lens in small gaps, demonstrating the influence these parameters have, and uncovering some practical shortcomings of this technique for application with lubricants (EHD or otherwise).

² Battelle's Columbus Laboratories, Columbus, Ohio.