
types arise from actual wear tests. The mechanisms responsible for 
one or the other type of change are of course vital for the failure pa­
rameter, and therefore must be represented in the model. 
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APPENDIX A 
Contact So lut ions for E las t i c P e n e t r a t i o n of a 
S p h e r i c a l Indenter A g a i n s t a C r a t e r e d Ha l f - space , in 
Ax ia l S y m m e t r y 

Consider Fig. 7(c). The contact pressure was numerically solved 
by Engel [4]; an exact solution was obtained by Barber [13]: 

*2Q(r) . . n ^ 2a / l - s2 /a2 

2Er
 P fli V l - r 2 / a 2 

2s s 
+ — W , T ' ) - — * V , T ' ) , 

til Kl 

(a > s > r > 0) 
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ir2q(r) 

2Er 
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where we define some new variables 

(A2) 

M = sin ' V - TTTI r = s/r 
1 — silai 

H = sin Vi 
2 /a : 

l - r 2 / a 2 
', T' = r/s 

de 

and elliptic integrals: 

F(p,k)= P " , 
J o V l - / e 2 s i n 2 0 

E(<p,k)= CVVl-k2sin26de 

At the middle of the crater r = 0, the pressure is 

g(0) = iSfl" [l + " (l + V T r^ ~ 2 * Sin"' V r r ? ) ] 

(A3) 

(A4) 

(A5) 

The elastic approach is 

s2 1 + p 
Fi (P, & 

The contact force is 

4 £ , . s 3 1 + p , , 

where [4]: 

Fi(p, 0 = 1 - P ( 1 + P ) - 1 VT^y 

F2(P, 0 = 1 - P ( 1 + p)" 1 Vl-S* 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

In expressions (A7-A9), £ = s/a, p = R1IR2. Equations (A7-A9) were 
verified by Barber [13], and (A10) was found extremely close: the term 
Vl -f4 in equation (A 10) is Vl - f2(l + f2/2) in the exact solu­
tion. 

.D ISCUSSION. 

J. R. Barber3 

If the law describing the local wear behavior of a system is known 
(e.g. wear rate proportional to local pressure and sliding speed) it is 
always at least theoretically possible to use it to determine the wear-
path, without reference to the author's optimal principle. This prin­
ciple must therefore be seen as an alternative statement of the laws 
of wear in the same way as optimal principles in mechanics can be used 
(for example) to replace some of the equations of elasticity or dy­
namics. 

The application of the method depends crucially on our ability to 
select the correct failure parameter to optimise, since different pa­
rameters will predict different wearpaths. Indeed, this degree of 
generality must be present in the principle to enable it to accurately 
model the variety of wear laws which might be encountered. 

Consider an example which is simple enough to be treated exactly 

•' University Department of Mechanical Engineering, Newcastle-upon-Tyne, 
England. 

by both methods. A solid consisting of a set of n parallel cylindrical 
pins of identical cross section but slightly differing lengths slides on 
a plane surface. The load is sufficient to ensure that all the pins make 
contact with the plane, but the longer pins will take the larger share 
of the load. If we assume that the wear rate is proportional to load, 
we find that differential wear at the longer pins causes the system to 
approach exponentially to a state of uniform loading. At any instant, 
the deviations of the individual loads P, on the pins from the mean 
value P are linearly proportional to the initial values, i.e. 

Pi-P Pi-P 
-etc. (Bl) 

PQI-PQ P02-P0 Pai-ro 

where Pm is the load on the j'th pin when sliding commences. 
Equation (Bl) therefore defines the wearpath in terms of the n 

parameters P; and we can now use the author's principle in reverse 
to find what failure parameter we must optimize to obtain equation 
(Bl) as a line of greatest slope. 

The function 

f(Pi) Z (Pi ~ Pf- (B2) 
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satisfies this condition. It is worth noting that other superficially 
plausible failure parameters would give the wrong answer here. For 
example, taking the maximum pin load P,- (max) as a parameter, the 
optimal principle would predict that wear would occur initially only 
at the most heavily loaded pin. 

The expression of the wearpath as the steepest descent of the 
function in equation (B2) has the advantage of emphasizing that the 
system tends to a steady-state of uniform pressure (/(P;) = 0). This 
fact, which applies to any system of constant contact area, is often 
overlooked. For example, in the author's Fig. 1, we should not expect 
the hammer to approach complete conformity with the plane, since 
some convexity is needed to obtain a uniform pressure distribu­
tion. 

It is tempting to extend the above argument to the cases of con­
tinuous contact area (A) by writing 

f(a) = § § (a - <rm)2dA (B3) 

where a is the local contact stress and am the mean value over A. 
However, while the optimization oif(a) will give the correct steady-
state solution (a = am if A remains constant), the intervening wear-
path will be a straight line and it is easily shown that this is in­
consistent with a linearly pressure dependent wear rate unless the 
local elastic deformation is proportional to the local contact pressure 
alone. 

The author may like to comment on the form of failure parameter 
which would give an exact solution in cases of constant but continuous 
contact areas. It may not be possible to give a form which is inde­
pendent of the particular contact geometry. If so, the method loses 
most of its practical value in view of the impossibility of knowing in 
advance how much error is introduced by an incorrect choice of failure 
parameter. 

Pracieep K. Gupta4 and Bharat Bhushan4 

The prediction of changes, due to wear, in the general geometry of 
interacting surfaces is indeed of great interest in numerous practical 
applications and the author should be commended for his continuous 
interest in this highly applied area. 

With regard to the asperity models and the interaction of a pair of 
practical rough surfaces a few points need some further clarification 
simply due to the complexities associated with the problem. 

(1) Authors' assumptions (a) to (c) are reasonable, but the as­
sumption (d) is somewhat questionable [14] .5 Although the author 
is in general agreement with this fact it will be very valuable if the 
practical applications, where such an assumption could be valid, are 
mentioned. 

(2) The assumption (g), which forms the basis of the analytical 
formulation, when combined with (d), creates some confusion per­
taining to the general nature of interaction. It is quite reasonable to 
say that when the Hertz elastic solution provides the solution on a 
macroscopic scale, the deformation at the asperities within the contact 
zone are likely to be plastic, even at loads determined by author's 
assumption (g). This plastic deformation will certainly cause changes 
in the topography of the surfaces and hence assumption (c) will be 
violated. 

(3) It may be suggested that the surface model based on assump­
tions (a) to (c) will be only relevant under light loads when the indi­
vidual asperity interactions can be considered independently [15]. 
In other words the junctions formed by interacting asperities are far 
apart from each other so that the elasticity of the substrate plays no 
role in influencing the deformation at one junction due to a load ap-

4 Mechanical Technology Inc., Latham, N. Y. 
6 Numbers in brackets designate Additional References at end of discus­

sion. 

plied at the other. Under such light loads, the author agrees with the 
fact that the Hertz solutions will not be valid on a macroscopic scale. 
At heavy loads, however, when the macroscopic problem may be 
Hertzian, the local asperities will perhaps coalesce and the surface 
model adopted by the author will not be valid. Under such conditions 
a more rigorous model for surface interaction, such as [16], must be 
considered. Authors' comments to this effect will be highly appre­
ciated. 

(4) The author's general comment that the wearpath principle 
postulated in the paper may be applicable to only "mild" or "gradual" 
wear processes where elastic contact stresses may be valid, once again 
needs support of some practical applications. It appears to the dis-
cussors that the asperity interactions problem, even under "mild" 
wear conditions will be plastic in nature. 
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Author's Closure 

The author thanks his discussors for their interesting comments. 
The foremost intent of this paper was to systematize predictive 

methods for the growth-history ("wear law") of wear scars; this is 
achieved in equation (8). In some simple wearing systems the state­
ment of the wear mechanism completely determines a unique wear-
path, and then no optimization is necessary. In the continuous wearing 
system of the spherical slider (Example of Section 2.4) more than one 
admissible wearpath exists; the one chosen by the process tends to 
induce uniform pressures, and is therefore "optimal" in a sense. The 
instantly conforming feature of many (sliding) contacts cannot 
however be taken as a rule, and the growth of the contact area does 
require a selective process. Certainly this is the case for the contin­
uously growing contact of the hammer in Fig. 1. 

We shall define a wearing system as determinate if all the geometric 
wear parameters (throughout the wear life) can be found by appli­
cation of the statements of the wear mechanism, given the external 
load conditions. For such a system, a single wearpath exists, and since 
optimization is bypassed, no separate failure parameter is needed. 

A constant-area wear system is determinate since the wear rate (i.e. 
the change of n geometric parameters %i) may be expressed uniquely 
by a matrix-relation,- like the following one for linear wear mecha­
nisms: 

\xi}=[K}\ai\={K}[F}\xi) (CI) 

where K is the wear-coefficient matrix (usually diagonal), and [F] is 
the surface elasticity matrix-operator, relating [x,| to the tractions 
[ a;) over the surface elements. 

Therefore no choice for wearpath exists in Barber's first example 
of a constant-area system of rods (Fig. 15(a)). If the compressed length 
of all rods is kept a constant Lf, then the force P; in the rods dimin­
ishes as wear wi takes place. The elastic deformation at any stage 
is 

a, = Li - Lf, 

and the force, (further approximated for moderate deformation): 

Pi = AE (1 - Lf/Lt) « AE ((Li/Lf) - 1) 

The statement of the wear mechanism may be written with some 
generality, between two consecutive states: 

wi = Lie - Li = KPl 
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Fig. 15 Wearpaths for constant-area system of uniaxial rod assembly; 
n = 2. The wear mechanism statement, W = KP" uniquely determines the 
wearpalh. 

Selecting P, as the wear parameters, the unique wearpath is 
then: 

Pi = Pie - (AEK/L,)Pfe 

which is shown in Fig. 15(6), for c = 1/3,1 and 3. All the wearpaths 
(i.e., for any value of c) are directed toward the origin where con­
formity is complete, Li = Lf. Regardless the initial set of rod-lengths 
Li, the wearpath is straight for c = 1. 

If the rodlengths L; are chosen as (geometric) wear parameters, it 
can be similarly shown that the unique wearpath for any rod is, (Fig. 
15(c)): 

Li = Lie-K(AEIL,Y(Lie-LfY 

It is remarked that a constant-force system (2P; = const) has a 
similar unique wearpath. 

For the continuous constant-area system (Barber's second example) 
the contact pressures may be written in complete generality (and 
therefore, "exactly") in the matrix form (a,) = [.F]|x;). Now, however, 
[F] is no longer diagonal as it was in the previous example for uniaxial 
rod elements. Thus a unique wearpath can be derived by the use of 
a known wear mechanism [K], (as stated in equation (CI)), assuring 
the full analytical value of the procedure. 

As opposed to a constant-area wear system, one with a (progres­
sively) growing area cannot be written simply as equation (Cl). This 
is because the expanding contact area affects and alters [F] as well. 
Since the change of the parameters xt is no longer uniquely deter­
mined by the wear mechanism, the optimal wearpath principle must 
be invoked to supply the wearpath. 

Regarding the choice of failure parameter,- this may be suggested 
in a given case by experience. Several possible candidate-functions 

may be tried, and the results compared with experimental data. While 
this may appear as a bit of hindsight, most wear-work contain a 
measure of the latter, in the author's experience. 

In response to Gupta and Bhushan's comments, the author can. 
quote several examples where no substantial change in microtopo-
graphy (roughness) occurs in a sustained wearing process. Fig. 6 of 
reference [1] shows consecutive Talysurf profiles of repetitively im­
pacted spring steel, where the developing wear scar does not show 
essential change of roughness until past 13 million cycles. As a con­
trast, surface finish gets progressively rougher in ballistic impact wear 
tests of carbon steel projectiles, especially when a tangential speed 
component is imposed on the normal approach [5]; the surface finish 
of type is, on the other hand, generally reduced by impact wear, in the 
printing process. 

The author agrees with the latter discussors on the importance of 
eventual plastic deformations occurring on the asperities. It is entirely 
possible of course to incorporate plastic deformations into both the 
stress analysis and/or the wear mechanism and failure parameter. On 
the other hand, Greenwood and Williamson [17] have shown through 
a simplified model, that, by virtue of the asperity height distribution, 
a wide region of the plasticity parameter will admit large pressures 
without plastic deformations taking place on the asperities. It is clear 
that models with a larger number of asperity parameters should also 
be investigated. The problem of the progressively wearing microto-
pography has been a neglected area so far in the literature; the author 
hopes that the procedures outlined in this paper will facilitate rational 
analytic approaches. 
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