
and the area is given by the determinant 

2A(e> 

Vi 

xh 

yk 

(A.22) 

Similar expressions may be found in [9]. 
The same analysis can be carried out for a rotating bearing such as 

a journal, partial arc, or multilobed bearing. Consider a shaft of radius 

R rotating with angular velocity u>j in a journal bearing rotating with 
angular velocity «/,. To maintain consistency in coordinate systems, 
unwrap the bearing and journal as in Fig. 5. Now, as before, the z-
direction is across the film while an x and y may be used to locate the 
nodes. Equations (A.16), (A.19), and (A.20) remain the same while 
Equations (A.17) and (A.18) become 

[ph "1< 
— R(i»b + o>j)b„ 

K%n = 0 

Note that x = RO in equations (A.21) and (A.22). 

K&n-
1(e) 

(A.23) 

(A.24) 

.DISCUSSION-

S. M. Rohde2 

The authors have presented some interesting numerical results 
pertaining to the application of finite element methods to lubrication 
problems. Their conclusions regarding mesh orientation and refine­
ment agree with our own experience. In fact, in [20]3 an analysis of the 
linear equation at each node arising in both the finite difference and 
finite element formulations for the squeeze film problem was per­
formed. Numerical comparisons similar to those presented in this 
paper were presented there. In particular, it was shown that the 
pressure distribution corresponding to (in the present paper) FEM 
# 2 is everywhere greater than that of FEM # 3 . 

A key and perhaps the most important point which the authors 
make is that for rectangular or "rectangular-like" regions the FEM 
topology becomes particularly simple leading to reduced bandwidth, 
etc. Furthermore, a large class of lubrication problems fall into this 
category. These facts were noted several years ago by the discussor 
[21]. Likewise it was also noted in [2] that such an "indexing" could 
be efficiently used to incorporate Reynold's boundary condition with 
an iterative scheme. More recently that construction was proven 
[22]. 

As noted in [21], any region which is "mappable" into a unit square 
can be indexed like the unit square. In this respect the unit square is 
a "canonical" region. Recent advances in automatic mesh generation 
[23, 24] have been based on precisely such mappings. We have recently 
used this approach (and some modifications) for generating two and 
three dimensional finite element discretizations. We will now illustrate 
the potential of the method of generating a FEM mesh via some ex­
amples. The reader is referred to [23, 24] for a complete treatment. 

Basically, as shown in Fig, 7, a mapping is desired which maps the 
unit square S, 0 < s < l , 0 < S < l onto the region R which is to be 
discretized. The mapping [25] is to take the interior of S onto the in­
terior of R and the boundaries of S onto the boundaries of R. Every 
point in the interior of R is to be the image of a unique point in S. 
Denoting the four boundaries (curves) of R by f, as shown, in Fig. 7 
a bilinearly blended transfinite interpolant may be written as 

lx(s, £)] 

\y(s,t)\ 
F(s, t)= (1 - s)li(t) + sf2(t) 

+ (1 - t)h(s) + M„(s) - (1 - s)ffi(l) - s ( l - t)h(Q) 

- (1 - s)(l - t)h(0) - st14(l) 

Equation (1) provides a suitable mapping of the interior (and 
boundaries) of S onto the interior (and boundaries) of R. Our expe­
rience with equation (1), which represents the simplest form of the 
transfinite interpolant [23, 24], has been very good. To use this rep­
resentation one merely programs the four parameterizations of the 

'• Research Laboratories, General Motors Corp., Warren, Mich. 
1 Numbers in brackets designate Additional References at end of paper. 
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Fig. 8(c) 

Fig. 8(d) 

boundaries. Picking these parameterizations as well as the appropriate 
four boundaries can, however, sometimes require some experimen­
tation. Here an interactive graphics terminal is almost mandatory. 
Figure 2a shows a uniform 10 X 10 mesh dividing S. Fig. 8(b) shows 
a simple mapping in which 

hit) •• 

hit) : 
1 + sin ivt 

t 

his) •• 

Uis) = 

Fig. 8(c) shows a more severe s i tua t ion in which 

, . f0.4 sin -wt\ 
hit)-

hit) 
1 + 0 . 2 s i n 3 7 r t j 

t I 

his) = 

Uis) = 

In Fig. 8(d) we have 

hit) : 
0.1 sin 7rt 

hit) 
1 + 0.15 sin 2rt] 

t 

his) = 
0.2 sin vs 

Uis) 

Finally in Fig. 8(e) we have 
1 + 0.2 sin irs 

hit) = 
j0 .2( l - t ) 
I 0 

hit) 

his) 

l - 0 . 3 ( ( l - i ) 

0 

0.45 - 0.25 cos ws 

0.25 sin ITS 

Fig. 8(e) 

, 0 < S < 0.3 

Uis) •• 
is - 0.3) /0.4 

0.3 

1.0 

(1.0 -s) 

0.3 < s < 0.4 

0.7 < s < 1 

In conclusion i t shou ld be emphas ized t h a t t h e inclusion of an au to ­

ma t i c m e s h genera t ion scheme such as p re sen t ed in th i s discussion, 

represents an extremely simple addit ion to a finite e lement lubrication 

code a n d is well wor th t h e effort. 

Additional References 
20 Rohde, S. M., Discussion of "Application of Finite Element Methods 

to Lubrication: Squeeze Films between Porous Surface," by Eidelberg, B. E. 
and Booker, J. F., JOURNAL OF LUBRICATION TECHNOLOGY TRANS, 
ASME, Series F, Vol. 98, No. 1, Jan. 1976. 

21 Rohde, S. M , "Finite Element Optimization of Finite Stepped Slider 
Bearing Profiles," TRANS ASLE, Vol. 17, 2, 1974. 

22 Rohde, S. M. and McAllister, G. T., "A Variational Formulation for a 
Class of Free Boundary Problems Arising in Hydrodynamic Lubrication," Int. 
J. Engrg. Sci., Vol. 13,1975. 

23 Gordon, William J., and Hall, Charles A., "Geometric Aspects of the 
Finite Element Method," in The Mathematical Foundations of the Finite 
Element Method with Applications to Partial Differential Equations, edited 
by A. K. Aziz, Academic Pres, New York, 1972. 

24 Gordon, William J., and Hall, Charles A., "Construction of Curvilinear 
Co-ordinate Systems and Application to Mesh Generation," Int. J. Num. 
Methods in Engineering, Vol. 7,1973, pp. 461-477. 

J. F. Booker4 

It is a good sign to find so many authors and discussors using the 
finite element method in lubrication. The method has come a long 

4 Associate Professor, School of Mechanical and Aerospace Engineering, Cornell 
University, Ithaca, N.. Y. 
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way in quite a short time (as these things are measured). 
The present paper and much of the earlier discussion centers on 

the mapping of bearing pads onto a generic rectangle for purposes of 
mesh generation. While this is certainly appropriate for many bearing 
and grooving geometries, the resulting regularity of nodal spacing is 
of some concern. One of the great putative advantages of the finite 
element method over the competing finite difference method is the 
ease with which meshes can be refined locally as required for solution 
accuracy. One hopes that this possibility is not being compromised 
too greatly in the schemes of the authors and discussors. 

The authors have considered in some detail the matter of optimal 
mesh design. The finding that meshes should be finest in regions of 
high pressure gradients is, of course, not unexpected. It leads imme­
diately to the awkward situation (found in other application fields 
as well) that the optimum problem formulation depends on the so­
lution*. The iterative process suggested by this paradox is being pur­
sued actively in the structural mechanics field at present; perhaps 
some impact of that work will be felt in our own field before too 
long. 

A. Curnier5 

Along the plan followed by the authors, three subjects may be 
distinguished: 

1 The pressure variational principle formulation which is quite 
classical and does not call for any comment; 

2 the bandwidth minimization: the current trend is to relieve the 
user from being too much concerned with minimizing the bandwidth 
of his mesh by using, for instance, profile storage and solvers; 

3 the mesh design optimizations: the paper provides very helpful 
practical guidelines for the user to design a near optimal mesh based 
on the intuitive picture of the solution: 

(a) Align the diagonals dividing the preliminary quadrilaterals 
into the definitive triangular elements with the expected pressure 
gradient directions 

(b) concentrate nodes where large pressure gradients are ex­
pected. 
These two qualitative results can be explained and to some extent 
quantified as it is sketched now: 

(a) Linear elements do preserve the continuity of pressure gra­
dients inside an element and hereby along each side of the diagonal 
element interfaces: they do not preserve it across such diagonals. 
Result 3 (a) is a consequence of this remark.. 

(b) For a linear element used to solve a second order elliptic 
problem like the one at hand, the error pressure is expected to de­
crease as the square of the mesh refinement: 

if p = exact pressure 
ph = f.e.m. pressure 
h = mesh coarseness characteristic dimension (h = max 

\hj\, hj = side length of triangle; = 1,3 
C = constant (element, ph) 
| | p | | ; = JS!(p2 + P'2 + . . .+p ( s ) 2 )do 

then | \p - pi, \ |» = Csh
2~s and in particular 

| | p - p / , | | o = C0fc
2 

Therefore the only limitation on the rate of convergence (for a given 
problem and a given element) is the smoothness of the solution p. 

The above rate of convergence is in the mean, for a regular mesh 
and without singularities. The pointwise convergence rate can be 
expected to be the same for a smooth solution and in fact 

\pe -pheU S Csh
2-" \pe\2 

where e = element 

'' Ph.D. student, Division of Structural Engineering and Structural Me­
chanics, University of California, Berkeley, Calif. 

|p|2 = f(pC»)dO 

Since h, (i, ux, uy are chosen constant over an element, the solution 
p exhibits singularities (probably more drastic as h decreases). With 
a regular mesh, the order of convergence will definitely be reduced. 
However, by properly grading the mesh (that is by keeping h\~* \pe\i 
roughly the same from one element to the next) the same order of 
accuracy can be achieved for a triangular as for a regular solution 

P-
Finally, it is recalled that the strict Ritz procedure always corre­

sponds to an approximation which is too "stiff." The discrete energy 
exceeds the exact one which corresponds to an underestimate of the 
pressure gradients and pressures. This is true in the mean only since 
the link between energy and pressure is not strictly monotone. In other 
words ph may exceed p in some parts of the mesh and still have 
smaller derivatives in the mean square sense. This can be changed by 
using a dual or hybrid formulation. 

Results concerning rectangular and higher order elements can be 
obtained along the same lines. 

Authors' Closure 

The authors would like to thank the three discussers of the paper 
for their constructive comments. We are glad to see so much interest 
in the method developed here as we feel it provides detailed structure 
to material noted by other authors where little is explored in 
depth. 

In the first discussion, substantial agreement with the authors work 
for the squeeze film problem is noted and some additional recent 
references are included. A useful mesh generation scheme particularly 
suited to the matrix labeling technique employed in the paper is 
presented. It appears to the authors that the matrix labeling facilitates 
automatic mesh generation of this and other types. In fact, the de­
velopment of practical analysis computer programs for nonresearch 
engineers almost requires automatic schemes. 

The second discusser is to be strongly commended for his excellent 
work in finite element analysis. It seems that the question of refining 
meshes locally has usually been done by adding a few extra nodes in 
the region where greatest accuracy is desired. Often in complex 
structural problems many of the nodes are assigned by hand so that 
adding another few nodes is much easier than regenerating a sub­
stantial portion of the mesh. Perhaps it is time to consider that the 
flexibility of the finite element method should be used to concentrate 
the grid points in the desired region using a combination of automatic 
mesh generation scheme and some sort of simple user assigned con­
centration factor. Simply adding a few nodes in one region can greatly 
increase the matrix bandwidth (and solution time) for the sake of only 
a few additional nodes. It should be emphasized again that the method 
developed in the paper does not depend in any way upon the regu­
larity of nodal spacing but only on the regularity of the nodal num­
bering process. The relation between the two depends upon the in­
genuity of the programmer. 

In the third discussion the comments are more mathematical in 
nature. The continuity of pressure gradients preserved along the sides 
of elements, but not across them, has been observed by Oden [10] and 
other authors. Noting this point does, however, contribute to under­
standing the results for optimum alignment of the diagonals. Certainly 
much more work can be done with regard to other element configu­
rations. 

In the time since the paper was written and accepted for publica­
tion, the method described here has been applied to many practical 
applications. It has proved useful in analysing partial arc, axial groove, 
multilobe, tilting pad, and pressure dam bearings. In most industrial 
applications the load is known while the equilibrium position must 
be found by an iterative process. A coarse grid system using ap­
proximately 3 axial node points and 9 circumferential node points per 
pad is used to obtain a first estimate of the equilibrium eccentricity 
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ECCENTRICITY RATIO, £. 100 

.1 1.0 10,0 

SfWRfELDMreOt, S 

Fig. 9 Bearing characteristics versus Sommerfeld number and eccentricity 
ratio for a S pad tilt pad bearing 

and attitude angle. Then a full grid system of, say, 5 by 31 nodes per 
pad is employed. For eccentricities around 0.5, this reduces the 
number of full grid iterations to 2 or 3. A casual survey of computer 
execution times indicates approximately a 50 percent saving by using 
the coarse grid system. Numerical differentiation is then used to de­
termine dynamic coefficients and the Routh criteria used for the 
stability of each bearing. Thus even the linearized bearing analysis, 
as opposed to a transient one, for a four pad multilobe bearing can 
involve 36 solutions of Reynolds equation to obtain the equilibrium 
position. This includes taking four pads per evaluation, three evalu­
ations to determine the appropriate slopes for a Newton Raphson 
iterative process, and three iterations. Furthermore, 32 more evalu­
ations are required to determine the dynamic coefficients (taking four 
pads and central differences for the coefficients). The situation is 
much worse for tilt pad bearings when pad iterations are necessary. 
Clearly the consideration of error and computer time saving is not 
merely academic. 

To further demonstrate the practical applicability of the method 
outlined in this paper, Fig. 9 presents stiffness and damping coeffi­
cients for a 5 pad tilt pad bearing. These coefficients were determined 
using the finite element analysis outlined here and the pad assembly 
method [25] ,6 These coefficients may be used in critical speed and 
stability programs when rotor-bearing systems are analyzed. Also, 
these coefficients may be employed in a linear time transient program. 
Finally, the characteristics may be used in a simple stability analysis 
for the bearing. A sample stability curve is shown in Fig. 10 for a 3 pad 
multilobe bearing where 

LID = .75 

X = 100° 

*!£ 
1 0 -

1 1 
3 LOBE BEARING 

—- THEORY [26] 
• FINITE ELEMENT 
A FINITE DIFFERENCE [27] 

I UNSTABLE .jS*^ 

STABLE 

1 
0.1 1 10 

SOMMERFELD NUMBER, S 

100 

Fig. 10 Stability threshold versus Sommerfeld number for three pad multilobe 
bearing. 100° pad arc length, offset factor 0.8, preload 0.7, load on center of 
pad, L/D = 0.7S 

C6 = bearing radial clearance, (mm) 
CXx, Cyy = principal horizontal, vertical damping coefficients, (N-

s/mm) 

Cxx, Cyy = Cxx 777-, Cyy —f-, dimensionless principal horizontal, 

vertical damping coefficients 
D = bearing diameter, (mm) 
Kxx, Kyy = principal horizontal, vertical stiffness coefficients, (N/ 

mm) 

Kxx. Kyy = Kxx ~—, Kyy -—, dimensionless principal horizontal, 
WT WT 

vertical stiffness coefficients 
L = bearing length (mm) 
M' = journal mass (N-sVmm) 

rat, - 1 . bearing preload factor 
c 

Ns = journal rotational speed, (rev/s) 

nN,LD /R\* n 
b = (— ) , Sommerfeld number 

WT \ C / 
WT = bearing external load, (N) 

a 

a = —, bearing offset factor 
X 

q, = bearing eccentricity ratio 
Sp = angle from leading edge of pad to pad pivot point, (degrees) 
X = pad arc length, (degrees) 

F7 

-, stability parameter 

mb = .1 

and the loading is on the center of the bottom pad. The finite element 
solution is compared to a long bearing solution with end leakage 
correction [26] and a finite difference solution [27], The stability 
parameter, ws, is discussed in detail in references [26] and [28]. 
Additional Nomenclature 
c = pad radial clearance, (mm) 

6 Numbers 25-28 in brackets designate Additional References at end of clo­
sure. 
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1976. 
27 Lund, J. W., "Rotor-Bearing Dynamics Design Technology, Part VII: The 
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