
X 
values of the parameter - is given in Fig. 11. 

c 
One clearly sees that a velocity distribution according to Fig. 11 
is not uniform. •• 

The consequences of this finding are: 

1 The uniform velocity assumption in elastohydrodynamic 
squeeze problems may give an erroneous picture of what is happen
ing in the region of small H* values. 

2 The true velocity distribution and thus more accurate oil 
film characteristics, can be found through a computing scheme 
based on successive approximations. The first approximation is 
given in this paper. 

Conclusion 
The integral equation approach proves to be successful to arrive 

at a solution of the elastohydrodynamic squeeze problem for two 
parallel cylinders approaching each other. The results are ob
tained assuming a uniform velocity distribution and an isoviscous 
lubricant. 

I t is shown that the former assumption may give an erroneous 

t\ = yjo exp (ap), a function of pressure. (46) 

/E'R\ 
\W ) 

due to the nonuni-picture at small values of parameter — 

formity of the velocity distribution (Fig. 11). I t is thought there
fore that a more refined analysis of the problem, taking into 
account the pressure dependency of the viscosity, must also in
clude the nonuniformity of the velocity distribution. 

D I S C U S S I O N 

H. Christensen8 

I t is now a number of years since I first started to look at the 
problem of elastohydrodynamios of normal approach and com
paratively little development of the theory has taken place since 
that time. I am therefore very glad to see the work of the 
author and I wish to congratulate him with an elegant formulation 
and solution of the constant viscosity problem for cylinders. 

In my earlier studies I also arrived at a formulation of the 
problem in terms of an integral equation which, however, differed 
from the one presented by the author. This formulation was 
not, however, used as a basis for my solution which utilized a 
straight iteration algorithm. 

The problem I had principally in mind at the time was the 
pressure dependent viscosity problem, and since the represen
tation I obtained is different from the author's I shall give a 
brief outline of the method here. 

Start by writing Reynolds equation in the following form 

h = (dp/dx^/^Vx (42) 

Now eliminate h between equation 42 and the elasticity equa
tion. After an integration by parts and substitution of the 
boundary conditions lim dp/dx = 0 we get the following equa

tion for dp/dx 

F(x) dp/dx = x(h0 + x2/2R) 
jkc 

irE if-
dp 

K(x, £)df 

where 

K(x,i) 

Y{x) = h*/\2-nV 

(x - f) In \x - £| f In If I 

(43) 

(44) 

(45) 

8 Leader, Section for Machine Dynamics. SINTEF, The En
gineering Research Foundation at the Technical University of Norway, 
Trondheim, Norway. Mem. ASME. 

This equation is highly nonlinear on account of the unkown 
function T(x). If, however, for purposes of obtaining a solution 
to the equation we regard T(x) as a given, known function, 
equation (43) is essentially a linear integral equation for dp/dx of 
the Fredholm type. This equation is solved by assuming a 
(numerical) function r < 0 ) . On this basis a solution dp/da:(1) is 
obtained and from this solution the function T(1) is evaluated. 
The iteration proceeds until convergence. 

Adopting the normalization used by the author, writing 

x = x/y/hoR, I = %/Vh«R; H = h(x)/h0 

equation (43) becomes 

(dp/dx) # V e x p (p) = Q.x(l + x"/2) Tx I 
* / CO 

$ K(x£)dl 

(47) 

with 

p = ap 

T = 48VoVR JR V; r; Eh0* 1 h„ 

_ l2aT]0VR 

The solution thus depends upon the two parameters T and Q. 
With constant viscosity equation (47) reduces to 

(dp/bx)Hl = x(l + *V2) Tx 
/ - ' 

dp 

If" 
K(x£)dl (48) 

with p = pho''/127]<)VR in accordance with the results of the 
author. 

I t is evident, that for constant viscosity the representation used 
by the author, avoiding an iterative procedure, is more elegant 
and also more convenient from a computational point of view. 
However, with pressure dependent viscosity the representation 
given in equation (43) may, perhaps, possess certain compu
tational advantages. 

To bring this more clearly out the normalization is changed to 

x = x(iraE)/m; I = £(iraE)/4:R; H = h(iraEy/8R 

With these variables equation (43) becomes 

dp 
r dp/dx = x(H0 + x1) 2x 

/ : a? 
K(x, £)d% (49) 

r = m H 

377oa(7raZ?)4 exp (— p) 

ap 

= f(Po) 

The solution is a function of the two parameters 

Ho = ho(iraE)2/8R and the central pressure po 

The constant viscosity equation can be found by replacing 
a by 7 = 1/po in the foregoing equation. The solution to this 
problem becomes a function of the single parameter H0 = 
hoiiryEY/m. 

Let us now consider the author's discovery that his integral 
equation (equation (11) in the paper) in general yields two 
solutions to each value of the parameter T, or else no real solu
tion. T consists essentially of the ratio of the relative velocity 
and the central film thickness separating the approaching sur
faces. But V and ho are not completely independent quantities. 

The author has demonstrated this mathematically in his 
equation (38); intuitively it can be seen by performing the fol
lowing "mental experiment." 
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We wish to measure the relative approach velocity of the sur
face at a fixed value of h0. The velocity is varied by changing 
the load on the cylinders. At a small load the velocity of the 
mass center of the cylinder will be small but so will the defor
mation velocity. In a repeat of the experiment with a larger 
load the velocity of mass-center will be larger but so will the 
deformation velocity. The relative approach velocity being 
the difference between the absolute velocity and the deformation 
velocity may still be small. I t may in fact have the same value 
as in the first experiment. This type of argument therefore 
leads to the expectation that the same relative velocity can 
be obtained by the application of two different loads. Or in 
other words, that the same value of T should give rise to two 
separate solutions. From this it appears that the bifurcation 
phenomenon that the author has observed is directly caused by 
his mode of representation and need not have any particularly 
interesting fundamental interpretation. If the alternative 
representation (49) is used a unique solution is found and the 

difficulties associated with bifurcation do not arise. I t is there
fore perhaps a little optimistic to believe that the convergence 
troubles experienced in the variable viscosity case are principally 
caused by the bifurcation phenomenon. 

The author points out that the maximum pressure in the film 
cannot exceed the Hertzian pressure. This is quite true with 
constant viscositj'. With pressure dependent viscosity, how
ever, the maximum film pressure can be very much larger than 
the corresponding Hertzian pressure. The author also points 
to the fact that the relative approach velocity will vary along 
the film, and suggest that this may have serious consequences for 
the solution at small separations. This fact becomes, if anything 
even more pronounced with pressure dependent viscosity, and 
appears to a larger extent to dominate the solution at small 
film thicknesses. I t seems likely that to obtain good solutions 
under these circumstances it becomes quite necessary to account 
for the effect of this velocity variation. 
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