
A P P E N D I X A where 

Finite Element Details 
To simplify notation the summation sign has been dropped 

and, unless otherwise specified, summation is from 1 to ne 

over repeated (dummy) subscripts. 
Within each element,6 we choose to relate the distribution 

of the variables to their ne nodal values by ne shape functions 
N, so that 

P =NjPi 

U =NiUi 

dh/dt = Njhi 

(5) 

With this assumption, the fluidity matrix is 

_ f £*L (' dN, dNj dN, dN\ 
dx dx dy dy J 

dA (6) 

and the flows are defined below. 
Special approximations seem necessary to account satisfac

torily for average density distribution. Shear flow Qu utilizes 
upwinding to represent downwind mass transport due to tan
gential surface motion. 

Shear flow is 

QV = \ phvNj'UdA 

=e,to+eP (7) 

where 

Qrx=\APhd-^ifdA 

f J . a N i 
IfdA (8) 

dNi 
--PkUj \ h-^N,dA 

is a consequence of shear action due to surface motion in the 
x direction where k is the node on the element farthest in the 
upwind direction. Flow QYy is defined similarly. 

Mass loss rate is 

a •> A 

d(ph)/dtNidA 

-Qf + Qt (9) 

6For greater detail on the element formulation see Booker and Huebner (1972) 
and Kumar (1988) Appendix A. 

Qf=- \ hdp/dtNjdA 

~ — pj/ne \ hdA (10) 

is a consequence of density variation, and 

Q? = - \ pbh/dtNidA 
J A 

f,dA (,P>hj[ NiNjC 
JA 

(H) 

is a consequence of squeeze action. 
Density rate flow Qp utilizes decoupling to represent lack 

of side flow in uniform pressure (e.g., incomplete film) regions 
when there is no tangential motion. (Note that calculation of 
p from Q^ is trivial with this decoupled approximation.) 

Total power dissipation rate (Booker (1989)) is given by 

H— -ffcouette + ^Poiseuille ^ 0 (12) 

where 

#couette=( ( M / 7 0 A U . A I W , 4 > 0 
•>A 

HP] 
•> A 

Vp-VpdA>:0 (13) 

These expressions are particularly useful adjuncts to finite 
element computations, since they afford simple evaluation on 
an element-by-element basis. 

A P P E N D I X B 

Time March 

For direct problems, we note that the dynamic state of the 
system can be characterized by either film density p or the area 
mass density II (= ph). The product II is well behaved even 
in (physically-realizable) circumstances in which its compo
nents are not; this offers both conceptual and computational 
advantages. For example, if pressure is uniform, the area mass 
density II is spatially constant in the steady state; if pressure 
is uniform, the product is temporally constant in the absence 
of tangential surface motion. (These analytical results provide 
useful checks and interpretations of numerical results of simple 
test cases.) Incrementing of p can be done directly by using 
p; we found (at least for simple cases) that much bigger time 
steps could be used if the quantity IT is incremented by using 
II (with p found subsequently). 

For indirect problems the dynamic state of the system com
prises both film density p (or II) and generalized coordinate 
vector e. For updating e, we essentially assume the density p 
to be constant over a time step. At the end of each time step 
a decoupled modified Euler step is used to update p (or II). 

D I S C U S S I O N 

P. K. Goenka1 and R. S. Paranjpe1 

Congratulations are in order for what appears to be the first 
mass conserving model for cavitation which is applicable to a 
finite element formulation. We found the algorithm easy to 
implement and were able to do so in our own, finite element 

Engine Research Department, General Motor Research Laboratories, 
Warren, MI, 48090. 

computer code [Goenka (1984)] in just a few hours. In our 
implementation we have calculated p and e separately and 
have used basic Euler stepping for time integration. We were 
able to duplicate the authors' results for the simpler cases of 
steady load and pure squeeze. However, we encountered some 
difficulty in duplicating the engine main bearing case. The film 
thickness approached zero and near 360 deg crank angle be
cause of extremely high e, and therefore, the algorithm did 
not converge. Did the authors encounter any such difficulty? 
Could they comment on probable causes for such problems 
and possible fine tuning of the algorithm to get around them. 
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As the authors have indicated, their results using the new 
algorithm seem to match very well with those obtained by us 
[Paranjpe and Goenka (1989)] for the engine main bearing 
application using the Elrod Algorithm and a finite difference 
solution. We would welcome a direct comparison of the key 
figures of merit which in our case were as follows: 

Minimum film thickness = 1.88 fim 
Maximum film pressure = 103.3 MPa 
Average power loss = 491.0 W 
Average flow =15.66 cmVs 

Have the authors made other comparisons with numerical 
results of the Elrod algorithm or with experimental results? 

Obviously, decoupling would be needed if II were to be 
solved for directly; otherwise additional matrix inversion would 
be needed at each time step. Could the authors give some details 
on how this decoupling might be accomplished? Could the 
authors also explain what a "decoupled modified Euler step" 
is? 

In our results for the engine main bearing (both the earlier 
published results and the FEM implementation of the new 
algorithm) we have found sharp spikes in the e curves. Have 
the authors encountered such spikes and, if so, could they 
comment on them? 

The ability to handle arbitrary geometry and grids is often 
thought of as the biggest advantage of FEM over FDM. Can 
this algorithm be extended to handle arbitrary grids, especially 
with respect to the upwinding scheme? 

Once again, this work should prove very beneficial, at least 
to those who use FEM to solve journal bearing problems. Not 
only will this algorithm provide physically more realistic so
lutions, but we won't be surprised if it does so at a significantly 
lower computation cost. We certainly intend to use this al
gorithm for engine bearing analysis at General Motors. 

Authors' Closure 
Drs. Goenka and Paranjpe provide both good news and bad 

news. The good news, of course, is that our algorithm could 
be implemented by others (albeit experts) on the basis of our 
published description alone. The bad new is that it didn't work 
as perfectly as one would like. 

We suspect that much of the difficulty can be traced to the 
time integration scheme they used, which is somewhat simpler 
than ours, which we have described very incompletely in Ap
pendix B. 

Generally, an integration scheme must be both stable and 
accurate for reasonable time steps. The simplest choice, Euler's 
method, is neither. For direct problems (specified kinematics), 
the modified Euler method (a 2nd order Runge-Kutta method 
related to the trapezoidal rule and requiring 2 derivative eval
uations per time step) works quite well for the prediction of 
nodal densities. (See, for example, Conte and de Boor (1980).) 

For indirect problems (specified kinetics), however, we have 
the additional complication that the rigid body displacement 
must be predicted more-or-less simultaneously with the dens
ities. For simplicity, however, we "decouple" the two inte
gration procedures by performing them sequentially; short time 
steps provide justification for the approximation. See Kumar 
(1991) for further details of the procedure. 

More awkward is the request for quantitative comparison 
with the results of Paranjpe and Goenka (1990), which we 
would expect to be very accurate. Our own results follow: 

Minimum film thickness = 1.325/^m 
Maximum film pressure = 114.1 MPa 
Average power loss = (not computed) 
Average flow = 15.67 cm /s 
The significant discrepancies in cycle extrema are unex

plained; it is unfortunate that we computed only one cycle 
average (for which agreement is little short of miraculous). 

In a later paper (Kumar and Booker (1991)) we have made 
detailed comparisons with both numerical results of the Elrod 
algorithm and with experimental results. The. latter study re
ports and explains in detail very sudden motions as described 
by Drs. Goenka and Paranjpe, showing them not to be nu
merical artifacts. 

We see no inherent reason why the present algorithm could 
not be applied to arbitrary grids, though we have not done so. 
In particular, the "upwinding" scheme poses no obvious prob
lem. 

In the "upwind" computation strategy for the (flow) vector 
reflecting "Couette" flow, the upwind node is that most up
wind (upstream) with respect to the relevant surface velocity 
component. In the case of ties, the node closer to the centroid 
would be chosen. (In the regular grids of right triangles which 
we have studied exclusively, this has meant the node at the 
right angle.) 

There are theoretical grounds for applying a similar "up
wind" density sampling in evaluation of the (fluidity) matrix 
reflecting "Poiseuille" flow constituents. Practical grounds 
seem lacking, however (owing to uniformity of density in rel
evant regions), and the algorithm as described here does not 
have this feature. Similarly, "upwinding" is omitted in the 
computation of the squeeze flow vector. 

Initial and boundary conditions proposed in the Problem 
Formulation (and amplified in footnotes 4 and 5) continue to 
vex both readers and authors. It appears that density must be 
specified only on boundary segments where mass flux is inward 
(even though such boundary segments may be impossible to 
identify a priori). In our numerical algorithm, however, we 
simply specify density on the entire boundary and rely on the 
upwinding scheme to select out the necessary information. 

Drs. Goenka and Paranjpe were evidently able to follow our 
original explanation of the algorithm; we can offer other read
ers some further clarification in the form of an additional table. 
Table CI explains the core of the algorithm for the direct 
problem (specific kinematics) as laid out previously in the 
partitions of Table 2 and the procedure of Table 3. Note that 

Table CI Equations and Unknowns 
state: p 
equations: n = n la + n l b + n2 + n3 

[q\=[K\[p) + IQU) + (efi) + ( e n 

f Qlo ] Klolo ! Klalb I Kia2 I Kla3 I pla \ 

I lib I Klbla ! K\bib I #162 I #163 P\b I 

I <?2 I K2\a ! #216 I #22 I #23 Pi I 

V 13 i L #31o \ # 3 1 6 I #32 I #33 J V Pi J 

V 1» \\l In \ [ W; lo \ 
nu I 1 t~ft I i nfi / 

y is I i w it }\i 16( 

W! 2 / WJ 2 1 I V 2 

y 3 / \\d 3 / W 3/ 

unknowns: n = n la + nib + n2 + n3 

(Pi.) 

( Q V I - M P I * ) 

I Q ' 2 ) - ( P 2 ) 

(q 3 ) 
constraints: ni = n ln + n Ib 

( P l « ) £ ( j f c a v ) 
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