Abstract

In this article, friction stir additive manufacturing, a solid-state process for rapid fabrication of large components, is employed to investigate laminated Al–Mg–Si alloy blocks. The study delves into microstructural changes, hardness distribution, and wear behavior on two distinct surfaces using various parameters such as rotational speed (800 rpm and 1200 rpm), traverse speed (41 mm/min and 82 mm/min), and a 50% pin overlap for block fabrication. Macrographs demonstrate the influence of adjacent toolpath overlap on layer integrity through interfacial mixing and consolidation of plastically deformed material. Within the overall stirred zone, re-stirring effects lead to refined grain formation and the dissolution of Mg2Si precipitates, resulting in an uneven micro-hardness distribution due to varying thermal cycles. Notably, specimens with a traverse speed of 41 mm/min exhibit reduced wear loss, attributed to microstructural changes that enhance resistance to plastic deformation during sliding, thereby improving tribo-layer stability. This enhancement is attributed to increased hardness arising from refined grains and the strain-hardening effect. Interestingly, the study finds that the horizontal surface of the fabricated blocks displays superior wear resistance compared to the vertical surface, due to the more homogeneous microstructure in individual layers. Further analysis using field emission scanning electron microscope and energy dispersive X-ray spectroscopy unveils the presence of glaze layers, oxide films, galling surfaces, grooving, trimming impacts, plowing marks, and the accumulation of wear debris within wide pits and on worn-out pin surfaces. Scar morphology reveals that both abrasive and adhesive wear mechanisms contribute to volumetric losses in the specimens.

References

1.
Engler
,
O.
,
Marioara
,
C. D.
,
Aruga
,
Y.
,
Kozuka
,
M.
, and
Myhr
,
O. R.
, “
Effect of Natural Ageing or Pre-Ageing on the Evolution of Precipitate Structure and Strength During Age Hardening of Al–Mg–Si Alloy AA 6016
,”
Mater. Sci. Eng. A
,
759
, pp.
520
529
.
2.
Hirsch
,
J.
, and
Al-Samman
,
T.
,
2013
, “
Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications
,”
Acta Mater.
,
61
(
3
), pp.
818
843
.
3.
Abdel-All
,
E. S.
,
Frank
,
M. C.
, and
Rivero
,
I. V.
,
2017
, “
Rapid Tooling Using Friction Stir Welding and Machining
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
81
95
.
5.
Galy
,
C.
,
Le Guen
,
E.
,
Lacoste
,
E.
, and
Arvieu
,
C.
,
2018
, “
Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences
,”
Addit. Manuf.
,
22
, pp.
165
175
.
6.
Mishra
,
R. S.
,
Haridas
,
R. S.
, and
Agrawal
,
P.
,
2022
, “
Friction Stir-Based Additive Manufacturing
,”
Sci. Technol. Weld. Join.
,
27
(
3
), pp.
141
165
.
7.
Kang
,
N.
, and
EL Mansori
,
M.
,
2020
, “
A New Insight on Induced-Tribological Behaviour of Hypereutectic Al-Si Alloys Manufactured by Selective Laser Melting
,”
Tribol. Int.
,
149
, p.
105751
.
8.
Gode
,
C.
,
Yilmazer
,
H.
,
Ozdemir
,
I.
, and
Todaka
,
Y.
,
2014
, “
Microstructural Refinement and Wear Property of Al–Si–Cu Composite Subjected to Extrusion and High-Pressure Torsion
,”
Mater. Sci. Eng. A
,
618
, pp.
377
384
.
9.
Kang
,
N.
,
Fu
,
Y.
,
Coddet
,
P.
,
Guelorget
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2017
, “
On the Microstructure, Hardness and Wear Behavior of Al-Fe-Cr Quasicrystal Reinforced Al Matrix Composite Prepared by Selective Laser Melting
,”
Mater. Des.
,
132
, pp.
105
111
.
10.
Liu
,
J.
,
Zhou
,
Y.
,
Fan
,
Y.
, and
Chen
,
X.
,
2018
, “
Effect of Laser Hatch Style on Densification Behavior, Microstructure, and Tribological Performance of Aluminum Alloys by Selective Laser Melting
,”
J. Mater. Res.
,
33
(
12
), pp.
1713
1722
.
11.
Suryawanshi
,
J.
,
Prashanth
,
K. G.
,
Scudino
,
S.
,
Eckert
,
J.
,
Prakash
,
O.
, and
Ramamurty
,
U.
,
2016
, “
Simultaneous Enhancements of Strength and Toughness in an Al-12Si Alloy Synthesized Using Selective Laser Melting
,”
Acta Mater.
,
115
, pp.
285
294
.
12.
Arafune
,
K.
, and
Hirata
,
A.
,
1999
, “
Thermal and Solutal Marangoni Convection in In–Ga–Sb System
,”
J. Cryst. Growth
,
197
(
4
), pp.
811
817
.
13.
Rathod
,
H. J.
,
Nagaraju
,
T.
,
Prashanth
,
K. G.
, and
Ramamurty
,
U.
,
2019
, “
Tribological Properties of Selective Laser Melted Al12Si Alloy
,”
Tribol. Int.
,
137
, pp.
94
101
.
14.
Kang
,
N.
,
Coddet
,
P.
,
Liao
,
H.
,
Baur
,
T.
, and
Coddet
,
C.
,
2016
, “
Wear Behavior and Microstructure of Hypereutectic Al-Si Alloys Prepared by Selective Laser Melting
,”
Appl. Surf. Sci.
,
378
, pp.
142
149
.
15.
Prashanth
,
K. G.
,
Debalina
,
B.
,
Wang
,
Z.
,
Gostin
,
P. F.
,
Gebert
,
A.
,
Calin
,
M.
,
Kühn
,
U.
,
Kamaraj
,
M.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Tribological and Corrosion Properties of Al-12Si Produced by Selective Laser Melting
,”
J. Mater. Res.
,
89
(
3
), pp.
2044
2054
.
16.
Torralba
,
J. M.
,
Da Costa
,
C. E.
, and
Velasco
,
F.
,
2003
, “
P/M Aluminum Matrix Composites: An Overview
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
203
206
.
17.
Huttunen-Saarivirta
,
E.
,
Heino
,
V.
,
Vaajoki
,
A.
,
Hakala
,
T. J.
, and
Ronkainen
,
H.
,
2019
, “
Wear of Additively Manufactured Tool Steel in Contact With Aluminium Alloy
,”
Wear
,
432–433
, p.
202934
.
18.
Tezel
,
T.
,
Topal
,
E. S.
, and
Kovan
,
V.
,
2019
, “
Characterising the Wear Behaviour of DMLS-Manufactured Gears Under Certain Operating Conditions
,”
Wear
,
440–441
, p.
203106
.
19.
Kan
,
W. H.
,
Huang
,
S.
,
Man
,
Z.
,
Yang
,
L.
,
Huang
,
A.
,
Chang
,
L.
,
Nadot
,
Y.
,
Cairney
,
J. M.
, and
Proust
,
G.
,
2021
, “
Effect of T6 Treatment on Additively-Manufactured AlSi10Mg Sliding Against Ceramic and Steel
,”
Wear
,
482–483
(
June
), p.
203961
.
20.
Podgornik
,
B.
,
Šinko
,
M.
, and
Godec
,
M.
,
2021
, “
Dependence of the Wear Resistance of Additive-Manufactured Maraging Steel on the Build Direction and Heat Treatment
,”
Addit. Manuf.
,
46
(
June
), p.
102123
.
21.
Li
,
X. P.
,
Ji
,
G.
,
Chen
,
Z.
,
Addad
,
A.
,
Wu
,
Y.
,
Wang
,
H. W.
,
Vleugels
,
J.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2017
, “
Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy With High Fracture Strength and Ductility
,”
Acta Mater.
,
129
, pp.
183
193
.
22.
Singh
,
H.
,
Raina
,
A.
, and
Irfan Ul Haq
,
M.
,
2018
, “
Effect of TiB2 on Mechanical and Tribological Properties of Aluminium Alloys—A Review
,”
Mater. Today Proc.
,
5
(
9
), pp.
17982
17988
.
23.
Kumar Srivastava
,
A.
,
Kumar
,
N.
, and
Rai Dixit
,
A.
,
2021
, “
Friction Stir Additive Manufacturing—An Innovative Tool to Enhance Mechanical and Microstructural Properties
,”
Mater. Sci. Eng. B
,
263
, p.
114832
.
24.
Palanivel
,
S.
,
Sidhar
,
H.
, and
Mishra
,
R. S.
,
2015
, “
Friction Stir Additive Manufacturing: Route to High Structural Performance
,”
JOM
,
67
(
3
), pp.
616
621
.
25.
Das
,
A.
,
Medhi
,
T.
,
Kapil
,
S.
, and
Biswas
,
P.
,
2023
, “
Different Build Strategies and Computer-Aided Process Planning for Fabricating a Functional Component Through Hybrid-Friction Stir Additive Manufacturing
,”
Int. J. Comput. Integr. Manuf.
, pp.
1
22
.
26.
Madhusudan
,
M.
,
Shanmuganatan
,
S. P.
,
Kurse
,
S.
, and
John
,
J.
,
2022
, “
Investigation on Mechanical and Tribological Behavior of Double Pass Friction Stir Welded Aluminium Joints
,”
J. Bio- Tribo-Corrosion
,
8
(
2
), pp.
1
15
.
27.
Moharrami
,
A.
,
Razaghian
,
A.
,
Emamy
,
M.
, and
Taghiabadi
,
R.
,
2019
, “
Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 Wt% Mg2Si Composite
,”
ASME J. Tribol.
,
141
(
12
), p.
122202
.
28.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2019
, “
Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites
,”
ASME J. Tribol.
,
141
(
4
), p.
041601
.
29.
Soustani
,
M. F.
,
Taghiabadi
,
R.
,
Jafarzadegan
,
M.
,
Shahriyari
,
F.
, and
Rahmani
,
A.
,
2019
, “
Improving the Tribological Properties of Al-7Fe-5Ni Alloys Via Friction Stir Processing
,”
ASME J. Tribol.
,
141
(
12
), p.
121602
.
30.
Lorenzo-Martin
,
M. C.
, and
Ajayi
,
O. O.
,
2014
, “
Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance
,”
ASME J. Tribol.
,
136
(
4
), p.
044501
.
31.
Sharma
,
D. K.
,
Patel
,
V.
,
Badheka
,
V.
,
Mehta
,
K.
, and
Upadhyay
,
G.
,
2019
, “
Fabrication of Hybrid Surface Composites AA6061/(B4C + MoS2) Via Friction Stir Processing
,”
ASME J. Tribol.
,
141
(
5
), p.
052201
.
32.
Rafi
,
S. M.
,
Satish Kumar
,
T.
,
Thankachan
,
T.
, and
Selvan
,
C. P.
,
2023
, “
Synergistic Effect of FSP and TiB2 on Mechanical and Tribological Behavior of AA2024 Surface Composites
,”
ASME J. Tribol.
,
145
(
11
), p.
114501
.
33.
Palanivel
,
S.
,
Nelaturu
,
P.
,
Glass
,
B.
, and
Mishra
,
R. S.
,
2015
, “
Friction Stir Additive Manufacturing for High Structural Performance Through Microstructural Control in an Mg Based WE43 Alloy
,”
Mater. Des.
,
65
, pp.
934
952
.
34.
Yuqing
,
M.
,
Liming
,
K.
,
Chunping
,
H.
,
Fencheng
,
L.
, and
Qiang
,
L.
,
2016
, “
Formation Characteristic, Microstructure, and Mechanical Performances of Aluminum-Based Components by Friction Stir Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1637
1647
.
35.
Li
,
Y.
,
He
,
C.
,
Wei
,
J.
,
Zhang
,
Z.
,
Qin
,
G.
, and
Zhao
,
X.
,
2021
, “
Correlation of Local Microstructures and Mechanical Properties of Al–Zn–Mg–Cu Alloy Build Fabricated Via Underwater Friction Stir Additive Manufacturing
,”
Mater. Sci. Eng. A
,
805
(
November
), p.
140590
.
36.
He
,
C.
,
Li
,
Y.
,
Zhang
,
Z.
,
Wei
,
J.
, and
Zhao
,
X.
,
2020
, “
Investigation on Microstructural Evolution and Property Variation Along Building Direction in Friction Stir Additive Manufactured Al–Zn–Mg Alloy
,”
Mater. Sci. Eng. A
,
777
, p.
139035
.
37.
Derazkola
,
H. A.
,
Khodabakhshi
,
F.
, and
Simchi
,
A.
,
2020
, “
Evaluation of a Polymer-Steel Laminated Sheet Composite Structure Produced by Friction Stir Additive Manufacturing (FSAM) Technology
,”
Polym. Test
,
90
(
May
), p.
106690
.
38.
Liu
,
F.
,
Zhang
,
Y.
, and
Dong
,
P.
,
2022
, “
Large Area Friction Stir Additive Manufacturing of Intermetallic-Free Aluminum-Steel Bimetallic Components Through Interfacial Amorphization
,”
J. Manuf. Process
,
73
, pp.
725
735
.
39.
Liu
,
Q.
,
Li
,
W.
,
Zhu
,
L.
,
Gao
,
Y.
,
Xing
,
L.
,
Duan
,
Y.
, and
Ke
,
L.
,
2022
, “
Temperature-Dependent Friction Coefficient and Its Effect on Modeling Friction Stir Welding for Aluminum Alloys
,”
J. Manuf. Process
,
84
, pp.
1054
1063
.
40.
Bakalova
,
T.
,
Svobodová
,
L.
,
Petkov
,
N.
,
Bahchedzhiev
,
H.
,
Švec
,
M.
,
Kejzlar
,
P.
,
Šutta
,
P.
, and
Daďourek
,
K.
,
2023
, “
The Effect of the Process Gas Mixture Ratio on the Structure and Composition of TiC and TiCN Thin Layers Prepared by Cathodic Arc Deposition on Tool Steel
,”
J. Manuf. Process
,
93
, pp.
90
100
.
41.
Jayaseelan
,
V.
,
Jayabalakrishnan
,
D.
,
Ashok Gandhi
,
R.
,
Muthuramalingam
,
T.
, and
Francis Xavier
,
J.
,
2021
, “
Impact of the Novel Square Wave Tool Path Pattern on AA6061-T6 Friction Stir Welding
,”
Mater. Manuf. Processes
37
(
8
), pp.
886
895
.
42.
Tongne
,
A.
,
Desrayaud
,
C.
,
Jahazi
,
M.
, and
Feulvarch
,
E.
,
2017
, “
On Material Flow in Friction Stir Welded Al Alloys
,”
J. Mater. Process. Technol.
,
239
, pp.
284
296
.
43.
Ambrosio
,
D.
,
Morisada
,
Y.
,
Ushioda
,
K.
, and
Fujii
,
H.
,
2023
, “
Material Flow in Friction Stir Welding: A Review
,”
J. Mater. Process. Technol.
,
320
(
July
), p.
118116
.
44.
Leitao
,
C.
,
Arruti
,
E.
,
Aldanondo
,
E.
, and
Rodrigues
,
D. M.
,
2016
, “
Aluminium-Steel Lap Joining by Multipass Friction Stir Welding
,”
Mater. Des.
,
106
, pp.
153
160
.
45.
Das
,
A.
,
Medhi
,
T.
,
Kapil
,
S.
, and
Biswas
,
P.
,
2023
, “
Multi-track Multi-layer Friction Stir Additive Manufacturing of AA6061-T6 Alloy
,”
Prog. Addit. Manuf.
, p.
0123456789
.
46.
Banik
,
A.
,
Saha
,
A.
,
Deb Barma
,
J.
,
Acharya
,
U.
, and
Saha
,
S. C.
,
2021
, “
Determination of Best Tool Geometry for Friction Stir Welding of AA 6061-T6 Using Hybrid PCA-TOPSIS Optimization Method
,”
Measurement
,
173
, p.
108573
.
47.
Do
,
H.
,
Asadi
,
S.
, and
Park
,
N.
,
2022
, “
Microstructural and Mechanical Properties of Dissimilar Friction Stir Welded CoCrFeMnNi High Entropy Alloy to STS304 Stainless Steel
,”
Mater. Sci. Eng. A
,
840
, p.
142979
.
48.
Medhi
,
T.
,
Das
,
A.
,
Pankaj
,
P.
,
Kapil
,
S.
, and
Biswas
,
P.
,
2022
, “
Multi-pass Friction Stir Lap Welding of AA 6061-T6: Implication of Tool Pin Overlapping on Microstructure and Mechanical Properties of Joints
,”
Soldag. e Insp.
,
27
, pp.
1
14
.
49.
Wu
,
J.
,
Deng
,
J.
,
Lu
,
Y.
,
Zhang
,
Z.
,
Meng
,
Y.
,
Wang
,
R.
, and
Sun
,
Q.
,
2022
, “
Effect of Textures Fabricated by Ultrasonic Surface Rolling on Dry Friction and Wear Properties of GCr15 Steel
,”
J. Manuf. Process
,
84
, pp.
798
814
.
50.
Li
,
X.
,
Deng
,
J.
,
Yue
,
H.
,
Ge
,
D.
, and
Zou
,
X.
,
2019
, “
Wear Performance of Electrohydrodynamically Atomized WS2 Coatings Deposited on Biomimetic Shark-Skin Textured Surfaces
,”
Tribol. Int.
,
134
, pp.
240
251
.
51.
Khan
,
M. M.
, and
Nisar
,
M.
,
2022
, “
Effect of In Situ TiC Reinforcement and Applied Load on the High-Stress Abrasive Wear Behaviour of Zinc–Aluminum Alloy
,”
Wear
,
488–489
, p.
204082
.
52.
Flegler
,
F.
,
Neuhäuser
,
S.
, and
Groche
,
P.
,
2020
, “
Influence of Sheet Metal Texture on the Adhesive Wear and Friction Behaviour of EN AW-5083 Aluminum Under Dry and Starved Lubrication
,”
Tribol. Int.
,
141
, p.
105956
.
53.
Gui
,
M.
,
Kang
,
S. B.
, and
Lee
,
J. M.
,
2000
, “
Influence of Porosity on Dry Sliding Wear Behavior in Spray Deposited Al–6Cu–Mn/SiCp Composite
,”
Mater. Sci. Eng. A
,
293
(
1–2
), pp.
146
156
.
54.
Ocelík
,
V.
,
Matthews
,
D.
, and
De Hosson
,
J. T. M.
,
2005
, “
Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High Power Laser
,”
Surf. Coatings Technol.
,
197
(
2–3
), pp.
303
315
.
55.
Alam
,
S. N.
, and
Kumar
,
L.
,
2016
, “
Mechanical Properties of Aluminium Based Metal Matrix Composites Reinforced With Graphite Nanoplatelets
,”
Mater. Sci. Eng. A
,
667
, pp.
16
32
.
56.
Stott
,
F. H.
, and
Jordan
,
M. P.
,
2001
, “
The Effects of Load and Substrate Hardness on the Development and Maintenance of Wear-Protective Layers During Sliding at Elevated Temperatures
,”
Wear
,
250
(
1–12
), pp.
391
400
.
57.
Rynio
,
C.
,
Hattendorf
,
H.
,
Klöwer
,
J.
, and
Eggeler
,
G.
,
2014
, “
On the Physical Nature of Tribolayers and Wear Debris After Sliding Wear in a Superalloy/Steel Tribosystem at 25 and 300 °C
,”
Wear
,
317
(
1–2
), pp.
26
38
.
58.
Bhadauria
,
N.
,
Pandey
,
S.
, and
Pandey
,
P. M.
,
2020
, “
Wear and Enhancement of Wear Resistance—A Review
,”
Mater. Today Proc.
,
26
, pp.
2986
2991
.
You do not currently have access to this content.