Abstract

The influence of particle size and surface modifier structure on the adsorption behavior and tribological properties of surface-capped silica nano-additives in rapeseed oil was investigated. With four kinds of SiO2 nanoparticles, methyl-modified DNS-2 (particle size 14 nm) and DNS-3 (particle size 5 nm), vinyl-modified RNS-D (particle size 5 nm), and epoxy-modified RNS-E (particle size 5 nm) as the nano-additives of rapeseed oil, their adsorption behavior in rapeseed oil was studied with a quartz crystal microbalance (QCM-D), and their tribological properties were evaluated with a four-ball friction and wear tester. DNS-2 with a larger particle size can form a high-strength tribo-film on the rubbed surface through shear sintering, thereby reducing the wear scar diameter of the steel ball. DNS-3, RNS-D, and RNS-E with smaller particle sizes can form a viscoelastic adsorption layer on the rubbed steel surface, and their equilibrium adsorption mass thereon increases with the increase of the polarity of the modifiers, which corresponds to the increases in their friction-reducing and anti-wear abilities as well as extreme pressure properties therewith. Particularly, the equilibrium adsorption mass and adsorption rate of RNS-E surface-capped by an epoxy group with the largest polarity are 16 times and 34 times higher than those of DNS-3 surface-capped by methyl. This indicates that encapsulating silica nanoparticles with strongly polar organic species could help to enhance its adsorption on rubbed metal surfaces and improve its tribological properties in rapeseed oil.

References

1.
Chen
,
B.
,
Liu
,
L.
,
Zhang
,
C.
,
Zhang
,
S.
,
Zhang
,
Y.
, and
Zhang
,
P.
,
2022
, “
Tribological Properties and Lubrication Mechanism of Protic Ionic Liquid-Modified Nanosilica as High-Temperature Anti-Wear Additive for Pentaerythritol Ester
,”
Tribol. Int.
,
176
, p.
107886
.
2.
Khare
,
H. S.
,
Lahouij
,
I.
,
Jackson
,
A.
,
Feng
,
G.
,
Chen
,
Z.
,
Cooper
,
G. D.
, and
Carpick
,
R. W.
,
2020
, “
Nanoscale Generation of Robust Solid Films From Liquid-Dispersed Nanoparticles via In Situ Atomic Force Microscopy: Growth Kinetics and Nanomechanical Properties
,”
ACS Appl. Mater. Interfaces
,
10
(
46
), pp.
40335
40347
.
3.
Bhaumik
,
S.
,
Maggirwar
,
R.
,
Datta
,
S.
, and
Pathak
,
S. D.
,
2018
, “
Analyses of Anti-Wear and Extreme Pressure Properties of Castor Oil With Zinc Oxide Nano Friction Modifiers
,”
Appl. Surf. Sci.
,
449
, pp.
277
286
.
4.
Verma
,
D.
,
Kumar
,
B.
,
Kavita
, and
Rastogi
,
R. B.
,
2019
, “
Zinc Oxide- and Magnesium-Doped Zinc Oxide-Decorated Nanocomposites of Reduced Graphene Oxide as Friction and Wear Modifiers
,”
ACS Appl. Mater. Interfaces
,
11
(
2
), pp.
2418
2430
.
5.
Yue
,
P.
,
Zhang
,
Y.
,
Zhang
,
P.
,
Zhang
,
Z.
, and
Zhang
,
S.
,
2020
, “
Research Progress of Nanomaterials as Lubricant Oil Additives
,”
Surf Technol.
,
49
(
9
), pp.
19
34
(in Chinese).
6.
Qiu
,
S.
,
Zhou
,
Z.
,
Dong
,
J.
, and
Chen
,
G.
,
2001
, “
Preparation of Ni Nanoparticles and Evaluation of Their Tribological Performance as Potential Additives in Oils
,”
ASME J. Tribol.
,
123
(
3
), pp.
441
443
.
7.
Li
,
S.
,
Ma
,
Q.
,
Tong
,
Z.
,
Liu
,
Q.
, and
Dong
,
G.
,
2022
, “
Synergistic Lubricating Performance of h-BN/GF Nanoparticles as Oil Additives for Steel-Steel Contact
,”
ASME J. Tribol.
,
144
(
6
), p.
061902
.
8.
Zhao
,
J.
,
Huang
,
Y.
,
He
,
Y.
, and
Shi
,
Y.
,
2020
, “
Nanolubricant Additives: A Review
,”
Friction
,
9
(
5
), pp.
891
917
.
9.
Hu
,
J.
,
Zhang
,
Y.
,
Yang
,
G.
,
Gao
,
C.
,
Song
,
N.
, and
Zhang
,
S.
,
2020
, “
In-situ Formed Carbon Based Composite Tribo-Film With Ultra-High Load Bearing Capacity
,”
Tribol. Int.
,
152
, p.
106577
.
10.
Guo
,
Z.
,
Zhang
,
Y.
,
Wang
,
J.
,
Gao
,
C.
,
Zhang
,
S.
, and
Zhang
,
P.
,
2020
, “
Interactions of Cu Nanoparticles With Conventional Lubricant Additives on Tribological Performance and Some Physicochemical Properties of an Ester Base oil
,”
Tribol. Int.
,
141
, p.
105941
.
11.
Chen
,
Y.
,
Yang
,
K.
,
Lin
,
H.
,
Zhang
,
F.
,
Xiong
,
B.
, and
Zhang
,
H.
,
2022
, “
Important Contributions of Multidimensional Nanoadditives on the Tribofilms: From Formation Mechanism to Tribological Behaviors
,”
Composites, Part B
,
234
, p.
109732
.
12.
Wu
,
L.
,
Lei
,
X.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Yang
,
G.
, and
Zhang
,
P.
,
2020
, “
The Tribological Mechanism of Cerium Oxide Nanoparticles as Lubricant Additive of Poly-Alpha Olefin
,”
Tribol. Lett.
,
68
(
4
), pp.
1
12
.
13.
Ren
,
B.
,
Gao
,
L.
,
Li
,
M.
,
Zhang
,
S.
,
Zu
,
G.
, and
Ran
,
X.
,
2020
, “
Tribological Properties and Anti-Wear Mechanism of ZnO@Graphene Core-Shell Nanoparticles as Lubricant Additives
,”
Tribol. Int.
,
144
, p.
106114
.
14.
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Yang
,
G.
,
Gao
,
C.
,
Zhou
,
C.
,
Zhang
,
C.
, and
Zhang
,
P.
,
2020
, “
One Step Synthesis of ZnO Nanoparticles From ZDDP and Its Tribological Properties in Steel-Aluminum Contacts
,”
Tribol. Int.
,
141
, p.
105890
.
15.
Li
,
X.
,
Cao
,
Z.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2006
, “
Surface-Modification In Situ of Nano-SiO2 and Its Structure and Tribological Properties
,”
Appl. Surf. Sci.
,
252
(
22
), pp.
7856
7861
.
16.
Hao
,
L.
,
Li
,
P.
,
Aljabri
,
A.
,
Li
,
H.
,
Liu
,
G.
, and
Xie
,
Z.
,
2021
, “
Investigation on the Tribological Performance of Functionalized Nanoscale Silica as an Amphiphilic Lubricant Additive
,”
J. Mater. Res. Technol.
,
15
, pp.
5507
5515
.
17.
Liu
,
C.
,
Friedman
,
O.
,
Meng
,
Y.
,
Tian
,
Y.
, and
Golan
,
Y.
,
2018
, “
CuS Nanoparticle Additives for Enhanced Ester Lubricant Performance
,”
ACS Appl. Nano Mater.
,
1
(
12
), pp.
7060
7065
.
18.
Liu
,
C.
,
Friedman
,
O.
,
Li
,
Y.
,
Li
,
S.
,
Tian
,
Y.
,
Golan
,
Y.
, and
Meng
,
Y. G.
,
2019
, “
Electric Response of CuS Nanoparticle Lubricant Additives: The Effect of Crystalline and Amorphous Octadecylamine Surfactant Capping Layers
,”
Langmuir
,
35
(
48
), pp.
15825
15833
.
19.
Lei
,
W.
,
Tang
,
W.
,
Mo
,
X.
,
Tian
,
Z.
,
Shen
,
P.
, and
Ouyang
,
T.
,
2023
, “
Tribological Evaluation of Few-Layer Nitrogen-Doped Graphene as an Efficient Lubricant Additive on Engine Cylinder Liner: Experiment and Mechanism Investigation
,”
ASME J. Tribol.
,
145
(
6
), p.
062201
.
20.
Jiang
,
Z.
,
Zhang
,
Y.
,
Yang
,
G.
,
Ma
,
J.
,
Zhang
,
S.
, and
Yu
,
L.
,
2017
, “
Tribological Properties of Tungsten Disulfide Nanoparticles Surface-Capped by Oleylamine and Maleic Anhydride Dodecyl Ester as Additive in Diisooctylsebacate
,”
Ind. Eng. Chem. Res.
,
56
(
6
), pp.
1365
1375
.
21.
Sui
,
T.
,
Song
,
B.
,
Zhang
,
F.
, and
Yang
,
Q.
,
2016
, “
Effects of Functional Groups on the Tribological Properties of Hairy Silica Nanoparticles as an Additive to Polyalphaolefin
,”
RSC Adv.
,
6
(
1
), pp.
393
402
.
22.
Lei
,
X.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Yang
,
G.
,
Zhang
,
C.
, and
Zhang
,
P.
,
2022
, “
Study on the Mechanism of Rapid Formation of Ultra-Thick Tribofilm by CeO2 Nano Additive and ZDDP
,”
Friction
,
11
(
1
), pp.
48
63
.
23.
Jiao
,
D.
,
Zheng
,
S.
,
Wang
,
Y.
,
Guan
,
R.
, and
Cao
,
B.
,
2011
, “
The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives
,”
Appl. Surf. Sci.
,
257
(
13
), pp.
5720
5725
.
24.
Wu
,
H.
,
Yin
,
S.
,
Wang
,
L.
,
Du
,
Y.
,
Yang
,
Y.
,
Shi
,
J.
, and
Wang
,
H.
,
2021
, “
Investigation on the Robust Adsorption Mechanism of Alkyl-Functional Boric Acid Nanoparticles as High Performance Green Lubricant Additives
,”
Tribol. Int.
,
157
, p.
106909
.
25.
Han
,
K.
,
Yue
,
P.
,
Zhang
,
Y.
,
Zhang
,
S.
,
Liu
,
Y.
,
Zhang
,
H.
, and
Jia
,
J.
,
2023
, “
Non External Field Adsorption Regulation Mechanism of Nanoparticles in Lubricating Fluid on Metal and Non-Metal Surfaces Based on Solvent-Induced Surface Polarity Change
,”
Chem. Eng. J.
,
474
, pp.
1385
8947
.
26.
Cecilia
,
J. A.
,
Ballesteros Plata
,
D.
,
Alves Saboya
,
R. M.
,
de Luna
,
T.
,
Cavalcante
,
F. M.
,
Jr.
,
C. L.
, and
Rodríguez-Castellón
,
E.
,
2020
, “
An Overview of the Biolubricant Production Process: Challenges and Future Perspectives
,”
Processes
,
8
(
3
), p.
257
.
27.
Cui
,
M.
,
Duan
,
Y.
,
Ma
,
Y.
,
Al-Shwafy
,
K. W. A.
,
Liu
,
Y.
,
Zhao
,
X.
,
Huang
,
R.
,
Qi
,
W.
,
He
,
Z.
, and
Su
,
R.
,
2020
, “
Real-Time QCM-D Monitoring of the Adsorption–Desorption of Expansion on Lignin
,”
Langmuir
,
36
(
16
), pp.
4503
4510
.
28.
Meléndrez
,
D.
,
Jowitt
,
T.
,
Iliut
,
M.
,
Verre
,
A. F.
,
Goodwin
,
S.
, and
Vijayaraghavan
,
A.
,
2018
, “
Adsorption and Binding Dynamics of Graphene-Supported Phospholipid Membranes Using the QCM-D Technique
,”
Nanoscale
,
10
(
5
), pp.
2555
2567
.
29.
Sauerbrey
,
G.
,
1959
, “
Use of Quartz Vibrator for Weighting Thin Films on a Microbalance
,”
Zeitschrift fur Physik
,
155
(
2
), pp.
206
212
.
30.
Li
,
X.
,
Li
,
Q.
,
Zhang
,
Z.
,
Dang
,
H.
, and
Liu
,
W.
,
2005
, “
Synthesis, Characterization and Tribological Properties of a Reactable Nano-Silica
,”
Tribology
,
25
(
6
), pp.
499
503
(in Chinese).
31.
Xu
,
Y.
,
Yu
,
J.
,
Dong
,
Y.
,
You
,
T.
, and
Hu
,
X.
,
2019
, “
Boundary Lubricating Properties of Black Phosphorus Nanosheets in Polyalphaolefin Oil
,”
ASME J. Tribol.
,
141
(
7
), p.
072101
.
32.
Ding
,
M.
,
Lin
,
B.
,
Sui
,
T.
,
Wang
,
A.
,
Yan
,
S.
, and
Yang
,
Q.
,
2018
, “
The Excellent Anti-Wear and Friction Reduction Properties of Silica Nanoparticles as Ceramic Water Lubrication Additives
,”
Ceram. Int.
,
44
(
12
), pp.
14901
14906
.
33.
Sui
,
T.
,
Song
,
B.
,
Wen
,
Y. H.
, and
Zhang
,
F.
,
2016
, “
Bifunctional Hairy Silica Nanoparticles as High-Performance Additives for Lubricant
,”
Sci. Rep.
,
6
(
1
), p.
22696
.
You do not currently have access to this content.