Abstract

The accurate prediction of wear depth is of great significance to the failure evaluation of gear transmission. At present, the traditional wear calculation method is still unable to accurately predict the wear depth of helical gears under variable working conditions. The present work proposes a novel wear depth prediction method of helical gear, which is based on the theory of thermodynamics and the degradation entropy generation (DEG) theorem. The method can be used in not only dry contact friction but also mixed elastohydrodynamic lubrication (EHL) condition. The degradation coefficient of helical gear material was determined by wear experiment. The advantages of using DEG theorem to calculate wear loss under variable operation conditions are demonstrated by wear experiment. Moreover, the influence of ignoring the update of tooth surface load on the calculation results in wear process is further studied. The results reveal that the wear depth prediction method of helical gear proposed in this work can obtain the consistent wear depth distribution with the traditional method. The results calculated by the traditional method are generally higher than the method in this paper, and ignoring the load update in the wear process will make the results larger. The prediction method of helical gear wear depth presented in this paper will be useful for accurately predicting the wear of helical gear.

References

1.
Zhou
,
C.
,
Xing
,
M.
,
Hu
,
B.
, and
Shi
,
Z.
,
2020
, “
A Modified Wear Model Considering Contact Temperature for Spur Gears in Mixed Elastohydrodynamic Lubrication
,”
Tribol. Lett.
,
68
(
4
), pp.
1
17
.
2.
Liu
,
H.
,
Liu
,
H.
,
Zhu
,
C.
, and
Tang
,
J.
,
2020
, “
Study on Gear Contact Fatigue Failure Competition Mechanism Considering Tooth Wear Evolution
,”
Tribol. Int.
,
147
, p.
106277
.
3.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1–2
), pp.
16
23
.
4.
Flodin
,
A.
, and
Andersson
,
S.
,
2000
, “
Simulation of Mild Wear in Helical Gears
,”
Wear
,
241
(
2
), pp.
123
128
.
5.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
6.
Kahraman
,
A.
,
Bajpai
,
P.
, and
Anderson
,
N. E.
,
2005
, “
Influence of Tooth Profile Deviations on Helical Gear Wear
,”
J. Mech. Des.
,
127
(
4
), pp.
656
663
.
7.
Park
,
D.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2015
, “
An Approximate Method to Predict Surface Wear of Hypoid Gears Using Surface Interpolation
,”
Mech. Mach. Theory
,
71
, pp.
64
78
.
8.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Prediction of Steady-State Wear Rate in Spur Gears
,”
Wear
,
342
, pp.
234
243
.
9.
Basaran
,
C.
, and
Yan
,
C. Y.
,
1998
, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
,
120
(
4
), pp.
379
384
.
10.
Klamecki
,
B. E.
,
1980
, “
Wear—An Entropy Production Model
,”
Wear
,
58
(
2
), pp.
325
330
.
11.
Chichinadze
,
A. V.
,
1995
, “
Processes in Heat Dynamics and Modelling of Friction and Wear (Dry and Boundary Friction)
,”
Tribol. Int.
,
28
(
1
), pp.
55
58
.
12.
Doelling
,
K. L.
,
Ling
,
F. F.
,
Bryant
,
M. D.
, and
Heilman
,
B. P.
,
2000
, “
An Experimental Study of the Correlation Between Wear and Entropy Flow in Machinery Components
,”
J. Appl. Phys.
,
88
(
5
), pp.
2999
3003
.
13.
Ling
,
F. F.
,
Bryant
,
M. D.
, and
Doelling
,
K. L.
,
2002
, “
On Irreversible Thermodynamics for Wear Prediction
,”
Wear
,
253
(
11–12
), pp.
1165
1172
.
14.
Bryant
,
M. D.
,
Khonsari
,
M. M.
, and
Ling
,
F. F.
,
2008
, “
On the Thermodynamics of Degradation
,”
Proc. R. Soc. A
,
464
(
2096
), pp.
2001
2014
.
15.
Amiri
,
M.
,
Khonsari
,
M. M.
, and
Brahmeshwarkar
,
S.
,
2012
, “
An Application of Dimensional Analysis to Entropy-Wear Relationship
,”
ASME J. Tribol.
,
134
(
1
), p.
011604
.
16.
Lijesh
,
K. P.
,
Khonsari
,
M. M.
, and
Kailas
,
S. V.
,
2018
, “
On the Integrated Degradation Coefficient for Adhesive Wear: A Thermodynamic Approach
,”
Wear
,
408
, pp.
138
150
.
17.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2018
, “
On the Modeling of Adhesive Wear With Consideration of Loading Sequence
,”
Tribol. Lett.
,
66
(
3
), pp.
1
11
.
18.
Song
,
Y.
,
Dai
,
Z.
, and
Xue
,
Q.
,
2014
, “
Entropy Generation Related to Plastic Deformation in Fretting Friction
,”
Wear
,
315
(
1–2
), pp.
42
50
.
19.
Aghdam
,
A. B.
, and
Khonsari
,
M. M.
,
2011
, “
On the Correlation Between Wear and Entropy in Dry Sliding Contact
,”
Wear
,
270
(
11
), pp.
781
790
.
20.
Rudas
,
J. S.
,
Gómez
,
L. M.
,
Toro
,
A.
,
Gutiérrez
,
J. M.
, and
Corz
,
A.
,
2018
, “
Discussion: Wear Rate and Entropy Generation Sources in a Ti6Al4V–WC/10Co Sliding Pair
,”
ASME J. Tribol.
,
139
(
6
), p.
061608
.
21.
Sosnovskiy
,
L. A.
, and
Sherbakov
,
S. S.
,
2017
, “
A Model of Mechanothermodynamic Entropy in Tribology
,”
Entropy
,
19
(
3
), p.
115
.
22.
Gidwani
,
A.
,
James
,
S.
,
Jagtap
,
S.
,
Karthikeyan
,
R.
, and
Vincent
,
S.
,
2018
, “
Effect of Entropy Generation on Wear Mechanics and System Reliability
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
346
(
1
), p.
012076
.
23.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2020
, “
Characterization of Abrasive Wear Using Degradation Coefficient
,”
Wear
,
450
, p.
203220
.
24.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2020
, “
Characterization of Multiple Wear Mechanisms Through Entropy
,”
Tribol. Int.
,
152
, p.
106548
.
25.
Bjerke
,
A.
,
Hrechuk
,
A.
,
Lenrick
,
F.
,
Markström
,
A.
,
Larsson
,
H.
,
Norgren
,
S.
,
M’Saoubi
,
R.
,
Björk
,
T.
, and
Bushlya
,
V.
,
2021
, “
Thermodynamic Modeling Framework for Prediction of Tool Wear and Tool Protection Phenomena in Machining
,”
Wear
,
484
, p.
203991
.
26.
Aghdam
,
A. B.
, and
Khonsari
,
M. M.
,
2016
, “
Application of a Thermodynamically Based Wear Estimation Methodology
,”
ASME J. Tribol.
,
138
(
4
), p.
041601
.
27.
Yang
,
L. J.
,
2003
, “
An Integrated Transient and Steady-State Adhesive Wear Model
,”
Tribol. Trans.
,
46
(
3
), pp.
369
375
.
28.
Naderi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Thermodynamic Analysis of Fatigue Failure in a Composite Laminate
,”
Mech. Mater.
,
46
, pp.
113
122
.
29.
Mondal
,
M. K.
,
Biswas
,
K.
, and
Maity
,
J.
,
2015
, “
A Transient Heat Transfer Model for Assessment of Flash Temperature During Dry Sliding Wear in a Pin-on-Disk Tribometer
,”
Metall. Mater. Trans. A
,
47
(
1
), pp.
600
607
.
30.
Wang
,
H.
,
Zhou
,
C.
,
Lei
,
Y.
, and
Liu
,
Z.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426
, pp.
896
909
.
31.
Kahraman
,
A.
, and
Ding
,
H.
,
2010
, “
A Methodology to Predict Surface Wear of Planetary Gears Under Dynamic Conditions
,”
Mech. Based Des. Struct. Mach.
,
38
(
4
), pp.
493
515
.
32.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2012
, “
Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness
,”
ASME J. Tribol.
,
134
(
1
), p.
011503
.
33.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2009
, “
Prediction of Steady-State Adhesive Wear in Spur Gears Using the EHL Load-Sharing Concept
,”
ASME J. Tribol.
,
131
(
2
), p.
024503
.
34.
Tian
,
X.
, and
Kennedy
,
F. E.
, Jr.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
(
1
), pp.
167
174
.
35.
Feng
,
K.
,
Borghesani
,
P.
,
Smith
,
W. A.
,
Randall
,
R. B.
,
Chin
,
Z. Y.
,
Ren
,
J.
, and
Peng
,
Z.
,
2019
, “
Vibration-Based Updating of Wear Prediction for Spur Gears
,”
Wear
,
426–427
, pp.
1410
1415
.
36.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2019
, “
On the Degradation of Tribo-Components in Boundary and Mixed Lubrication Regimes
,”
Tribol. Lett.
,
67
(
1
), pp.
1
11
.
37.
Lijesh
,
K. P.
, and
Khonsari
,
M. M.
,
2019
, “
Application of Thermodynamic Principles in Determining the Degradation of Tribo-Components Subjected to Oscillating Motion in Boundary and Mixed Lubrication Regimes
,”
Wear
,
436
, p.
203002
.
You do not currently have access to this content.