Abstract

Tribo-oxidation mechanism and tribological behavior of TaC–20 vol%SiC composites from 25 to 800 °C coupled with aluminum oxide (Al2O3) and cemented carbide (WC–Co) were investigated. Tribo-oxidation products on the worn surface were analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that as temperature increased from 25 °C to 800 °C, the specific wear-rates (WRs) of the composites decreased from 10−3 mm3N−1m−1 to 10−4 mm3N−1m−1 when coupled with Al2O3, while the WRs increased from 10−6 mm3N−1m−1 to 10−3 mm3N−1m−1 continuously when coupled with WC–Co. At 25 °C, TaC in the composite was partially oxidized into TaO2 as coupled with the two dualities. At 400 °C, the TaC in composite was oxidized into Ta2O5, while SiC was oxidized into SiCOx as coupled with Al2O3, while they were oxidized into Ta2O5 and SiO2−x as coupled with WC–Co. At 800 °C, the composites were oxidized into Ta2O5, SiCOx, and SiO2−x as coupled with the two dualities. The segregation of Ta compounds on the surface was promoted by friction. For the composites–Al2O3 tribo-pair, the wear mechanism changed from abrasion and adhesion at low temperature, to abrasion, adhesion, and tribochemical reaction (oxidation) at medium temperature, and adhesion and tribochemical reaction at high temperature. For composites–WC–Co tribo-pair, the wear mechanism was adhesion and tribochemical reaction in the whole temperature range.

References

1.
Fahrenholtz
,
W. G.
,
Wuchina
,
E. J.
,
Lee
,
W. E.
, and
Zhou
,
Y. C.
,
2014
,
Ultra-High Temperature Ceramics: Materials for Extreme Environment Application
,
John Wiley & Sons, Inc
,
New Jersey
.
2.
Shabalin
,
R. L.
,
2019
,
Ultra-high Temperature Materials II: Refractory Carbides I (Ta, Hf, Nb and Zr Carbides)
,
Springer
,
Singapore, Dordrecht
.
3.
Ren
,
P.
,
Wen
,
M.
,
Zhang
,
K.
,
Du
,
S.
,
Zhang
,
Y.
,
Chen
,
J.
, and
Zheng
,
W.
,
2018
, “
Self-assembly of TaC@Ta Core-Shell-Like Nanocomposite Film via Solid-State Dewetting: Toward Superior Wear and Corrosion Resistance
,”
Acta Mater.
,
160
(
1
), pp.
72
84
.
4.
Zhao
,
Y.
,
Xu
,
J.
, and
Peng
,
S.
,
2021
, “
Synthesis and Evaluation of TaC Nanocrystalline Coating With Excellent Wear Resistance, Corrosion Resistance, and Biocompatibility
,”
Ceram. Int.
,
47
(
14
), pp.
20032
20044
.
5.
Lv
,
Y.
,
Li
,
J.
,
Tao
,
Y.
, and
Hu
,
L.
,
2017
, “
High-Temperature Wear and Oxidation Behaviors of TiNi/Ti2Ni Matrix Composite Coatings With TaC Addition Prepared on Ti6Al4V by Laser Cladding
,”
Appl. Surf. Sci.
,
402
(
1
), pp.
478
494
.
6.
Zhao
,
N.
,
Zhao
,
Y.
,
Wei
,
Y.
,
Wang
,
X.
,
Li
,
J.
,
Xu
,
Y.
,
Yan
,
F.
, and
Lu
,
Z.
,
2019
, “
Friction and Wear Behavior of TaC Ceramic Layer Formed In-situ on the Gray Cast Iron
,”
Tribol. Int.
,
135
(
1
), pp.
181
188
.
7.
Humam
,
S. B.
,
Gyawali
,
G.
,
Amanov
,
A.
,
Kim
,
T. H.
, and
Lee
,
S. W.
,
2021
, “
Microstructure, Interface, and Nanostructured Surface Modifications to Improve Mechanical and Tribological Performance of Electrodeposited Ni-W-TaC Composite Coating
,”
Surf. Coat. Technol.
,
419
(
1
), p.
127293
.
8.
Smart
,
D. R.
,
Kumar
,
J. P.
, and
Periasamy
,
C.
,
2021
, “
Microstructural, Mechanical and Wear Characteristics of AA7075/TaC/Si3N4/Ti Based Hybrid Metal Matrix Composite Material
,”
Mater. Today: Proc.
,
43
(
2
), pp.
784
794
.
9.
Karge
,
L.
,
Gilles
,
R.
,
Mukherji
,
D.
,
Beran
,
P.
,
Strunz
,
P.
,
Hoelzel
,
M.
, and
Rösler
,
J.
,
2018
, “
Beyond Ni-Base Superalloys: Influence of Cr Addition on Co-Re Base Alloys Strengthened by Nano-sized TaC Precipitates
,”
Phys. B
,
551
(
1
), pp.
1
5
.
10.
Wei
,
Q.
,
Shen
,
Q.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Luo
,
G.
, and
Zhang
,
L.
,
2019
, “
Microstructure Evolution, Mechanical Properties and Strengthening Mechanism of Refractory High-Entropy Alloy Matrix Composites With Addition of TaC
,”
J. Alloys Compd.
,
777
(
1
), pp.
1168
1175
.
11.
García
,
C.
,
Martín
,
F.
,
Herranz
,
G.
,
Berges
,
C.
, and
Romero
,
A.
,
2018
, “
Effect of Adding Carbides on Dry Sliding Wear Behaviour of Steel Matrix Composites Processed by Metal Injection Moulding
,”
Wear
,
414–415
(
1
), pp.
182
193
.
12.
Bhagat
,
R. B.
,
Conway
,
J. C.
,
Amateau
,
M. F.
, and
Brezler
,
R. A.
,
1996
, “
Tribological Performance Evaluation of Tungsten Carbide-Based Cermets and Development of a Fracture Mechanics Wear Model
,”
Wear
,
201
(
1–2
), pp.
233
243
.
13.
van der Merwe
,
R.
, and
Sacks
,
N.
,
2013
, “
Effect of TaC and TiC on the Friction and dry Sliding Wear of WC–6wt% Co Cemented Carbides Against Steel Counterfaces
,”
Int. J. Refract. Met. Hard Mater.
,
41
(
1
), pp.
94
102
.
14.
Panov
,
V. S.
, and
Zaitsev
,
A. A.
,
2015
, “
Developmental Tendencies of Technology of Ultradispersed and Nanosized WC–Co Hard Alloys Alloyed With Tantalum Carbide: Review
,”
Russ. J. Non-ferrous Metals
,
56
(
4
), pp.
477
485
.
15.
Zhao
,
X.
,
Zhang
,
M.
,
Zuo
,
D.
,
Fang
,
Y.
,
Zhang
,
Q.
,
Zhu
,
Z.
,
Liu
,
G.
, and
Xu
,
F.
,
2020
, “
Ti(C,N)-Based Cermet With Different TaC/(TaC + WC) Weight Ratio by In-situ Reactive Hot Pressing: Microstructure and Mechanical Properties
,”
Mater. Today Commun.
,
25
(
1
), p.
101661
.
16.
Chen
,
H.
,
Wu
,
Z.
,
Hai
,
W.
,
Liu
,
L.
,
Qin
,
F.
,
Sun
,
X.
,
Luo
,
T.
, and
Sun
,
W.
,
2021
, “
Microstructure, Mechanical and Tribological Behaviour of TaC-SiC Composites
,”
J. Ceram. Sci. Technol.
,
12
(
1
), pp.
9
18
.
17.
Nisar
,
A.
, and
Balani
,
K.
,
2016
, “
Role of Interfaces on Multi-length Scale Wear Mechanics of TaC-Based Composites
,”
Adv. Eng. Mater.
,
19
(
5
), p.
1600713
.
18.
Du
,
S.
,
Zhang
,
K.
,
Wen
,
M.
,
Ren
,
P.
,
Meng
,
Q.
,
Hu
,
C.
, and
Zheng
,
W.
,
2018
, “
Tribochemistry Dependent Tribological Behavior of Superhard TaC/SiC Multilayer Films
,”
Surf. Coat. Technol.
,
337
(
1
), pp.
492
500
.
19.
Ren
,
P.
,
Zhang
,
K.
,
Wen
,
M.
,
Du
,
S.
,
Chen
,
J.
, and
Zheng
,
W.
,
2018
, “
The Roles of Ag Layers in Regulating Strengthening-Toughening Behavior and Tribochemistry of the Ag/TaC Nano-multilayer Films
,”
Appl. Surf. Sci.
,
445
(
1
), pp.
415
423
.
20.
Desmaison-Brut
,
M.
,
Alexandre
,
N.
, and
Desmaison
,
J.
,
1997
, “
Comparison of the Oxidation Behaviour of Two Dense Hot Isostatically Pressed Tantalum Carbide (TaC and Ta2C) Materials
,”
J. Eur. Ceram. Soc.
,
17
(
11
), pp.
1325
1334
.
21.
Wuchina
,
E.
,
Opila
,
E.
,
Opeka
,
M.
,
Fahrenholtz
,
W.
, and
Talmy
,
I.
,
2007
, “
UHTCS: Ultra-high Temperature Ceramic Materials for Extreme Environment Applications
,”
Electrochem. Soc. Interface
,
16
(
6
), pp.
30
36
.
22.
Nisar
,
A.
,
Ariharan
,
S.
,
Venkateswaran
,
T.
,
Sreenivas
,
N.
, and
Balani
,
K.
,
2016
, “
Oxidation Studies on TaC Based Ultra-High Temperature Ceramic Composites Under Plasma Arc Jet Exposure
,”
Corros. Sci.
,
109
(
1
), pp.
50
61
.
23.
Nieto
,
A.
,
Kumar
,
A.
,
Lahiri
,
D.
,
Zhang
,
C.
,
Seal
,
S.
, and
Agarwal
,
A.
,
2014
, “
Oxidation Behavior of Graphene Nanoplatelet Reinforced Tantalum Carbide Composites in High Temperature Plasma Flow
,”
Carbon
,
67
(
1
), pp.
398
408
.
24.
Chen
,
Z. K.
,
Wu
,
Y.
,
Chen
,
Y. H.
,
Wang
,
H. R.
,
Zeng
,
Y.
, and
Xiong
,
X.
,
2020
, “
Preparation and Oxidation Behavior of Cf/C–TaC Composites
,”
Mater. Chem. Phys.
,
254
(
1
), p.
123428
.
25.
Sciti
,
D.
,
Silvestroni
,
L.
,
Guicciardi
,
S.
,
Fabbriche
,
D. D.
, and
Bellosi
,
A.
,
2009
, “
Processing, Mechanical Properties and Oxidation Behavior of TaC and HfC Composites Containing 15 vol% TaSi2 or MoSi2
,”
J. Mater. Res.
,
24
(
6
), pp.
2056
2065
.
26.
Liu
,
L.
,
Ye
,
F.
,
Zhang
,
Z.
, and
Zhou
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of the Spark Plasma Sintered TaC/SiC Composites
,”
Mater. Sci. Eng. A
,
529
(
31–32
), pp.
479
484
.
27.
Wagner
,
C. D.
,
Riggs
,
W. M.
,
Davis
,
L. E.
,
Moulder
,
J. F.
, and
Muilenberg
,
G. E.
,
1978
,
Handbook of X-ray Photoelectron Spectroscopy
,
Perkin-Elmer Corporation
,
MN
, http//srdata.nist.gov/xps/selEnergyType.aspx
28.
Imai
,
Y.
,
Watanabe
,
A.
,
Mukaida
,
M.
,
Osato
,
K.
,
Tsunoda
,
T.
,
Kameyama
,
T.
, and
Fukuda
,
K.
,
1995
, “
Stoichiometry of Tantalum Oxide Films Prepared by KrF Excimer Laser-Induced Chemical Vapor Deposition
,”
Thin Solid Films
,
261
(
1–2
), pp.
76
82
.
29.
Chen
,
H.
,
Wu
,
Z.
,
Hai
,
W.
,
Liu
,
L.
, and
Sun
,
W.
,
2020
, “
Tribo-oxidation and Tribological Behavior of ZrB2-20%vol. SiC Composite Coupled With WC and Al2O3 at High Temperature
,”
Wear
,
464–465
(
1
), p.
203534
.
30.
Hornetz
,
B.
,
Michel
,
H.-J.
, and
Halbritter
,
J.
,
1994
, “
ARXPS Studies of SiO2-SiC Interfaces and Oxidation of 6H SiC Single Crystal Si-(001) and C-(001) Surfaces
,”
J. Mater. Res.
,
9
(
12
), pp.
3088
3094
.
31.
Yagi
,
K.
,
Murata
,
J.
,
Kubota
,
A.
,
Sano
,
Y.
,
Hara
,
H.
,
Okamoto
,
T.
,
Arima
,
K.
,
Mimura
,
H.
, and
Yamauchi
,
K.
,
2008
, “
Catalyst-Referred Etching of 4H SiC Substrate Utilizing Hydroxyl Radicals Generated From Hydrogen Peroxide Molecule
,”
Surf. Interface Anal.
,
40
(
6–7
), pp.
998
1001
.
32.
Zhang
,
C.
,
Boesl
,
B.
, and
Agarwal
,
A.
,
2017
, “
Oxidation Resistance of Tantalum Carbide-Hafnium Carbide Solid Solutions Under the Extreme Conditions of a Plasma Jet
,”
Ceram. Int.
,
43
(
17
), pp.
14798
14806
.
33.
Evans
,
H. E.
,
Bowser
,
W. M.
, and
Weinberg
,
W. H.
,
1980
, “
An XPS Investigation of Alumina Thin Films Utilized in Inelastic Electron Tunneling Spectroscopy
,”
Appl. Surf. Sci.
,
5
(
3
), pp.
258
274
.
34.
Khyzhun
,
O. Y.
,
2000
, “
XPS, XES and XAS Studies of the Electronic Structure of Tungsten Oxides
,”
J. Alloys Compd.
,
305
(
1–2
), pp.
1
6
.
35.
Sharma
,
S. K.
,
Kumar
,
B.
,
Zugelj
,
B. B.
,
Kalin
,
M.
, and
Kim
,
Y.-W.
,
2017
, “
Room and High Temperature Reciprocated Sliding Wear Behavior of SiC-WC Composites
,”
Ceram. Int.
,
43
(
18
), pp.
16827
16834
.
36.
Kumar
,
D. D.
,
Kumar
,
N.
,
Kalaiselvam
,
S.
,
Radhika
,
R.
,
Rabel
,
A. M.
, and
Jayavel
,
R.
,
2017
, “
Tribo-mechanical Properties of Reactive Magnetron Sputtered Transition Metal Carbide Coatings
,”
Tribol. Int.
,
114
(
1
), pp.
234
244
.
37.
Zum Gahr
,
K.-H.
,
1987
,
Tribology Series 10: Microstructure and Wear of Materials
,
Elsevier
,
New York
, pp.
93
99
.
38.
Ye
,
D. L.
, and
Hu
,
J. H.
,
2002
,
Practical Inorganic Thermodynamics Manual
, 2nd ed.,
Metallurgical Industry Press
,
Beijing
.
You do not currently have access to this content.