Abstract

Space-based mechanisms must operate under harsh environments, usually without access for maintenance; failure may result in a loss of a spacecraft. Therefore, space agencies support research on high-performance mechanism designs and materials, one key area being space tribology. Bulk metallic glasses (BMGs) are a class of alloy characterized by their amorphous structure, which results in a material with extremely high strength, corrosion resistance, high hardness, and high elastic limit. BMGs have demonstrated improved wear resistance when compared against traditional engineering materials in similar applications. Four BMG compositions, Zr53Al16Co23.25Ag7.75, Zr49Ti1.96Cu37.24Al9.8Y2, Zr60Ti2Nb2Al7.5Ni10Cu18.5, and Cu47Zr46Al5Y2 (at%), were selected from the literature as potential candidates for space-based mechanisms applications. Wear testing, hardness, profilometry, and scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) spectroscopy analysis were performed on the selected alloys, and their results were compared. High-resolution 3D profilometry and detailed image analysis of wear tracks and volume loss resulted in a critical re-assessment of the Archard wear coefficient. For the compositions tested, the hardness was not a useful predictor of the wear performance as suggested by the Archard wear equation. Processing history and test configuration significantly influenced the wear behavior. The alloy Zr49Ti1.96Cu37.24Al9.8Y2 was found to be the best BMG candidate for space wear applications when taking manufacturability into consideration. BMG hardness and wear test results were compared with similar testing performed on conventional crystalline alloys commonly used in space applications: titanium alloy Ti-6Al-4V ELI, and cold-worked stainless steels AISI 303 and AISI 304.

References

1.
Briscoe
,
H. M.
,
1990
, “
Why Space Tribology?
,”
Tribol. Int.
,
23
(
2
), pp.
67
74
.
2.
Jones
,
W. R.
, and
Jansen
,
M. J.
,
2000
, “
Space Tribology
,” NASA Tech. Memo. NASATM-2000-209924.
3.
Fortescue
,
P.
,
Swinerd
,
G.
, and
Stark
,
J.
, eds.
2011
,
Spacecraft Systems Engineering
,
Wiley
,
New York
.
4.
Roberts
,
E. W.
,
2012
, “
Space Tribology: Its Role in Spacecraft Mechanisms
,”
J. Phys. Appl. Phys.
,
45
(
50
), p.
503001
.
5.
Grotzinger
,
J. P.
,
Crisp
,
J.
,
Vasavada
,
A. R.
,
Anderson
,
R. C.
,
Baker
,
C. J.
,
Barry
,
R.
,
Blake
,
D. F.
, et al
,
2012
, “
Mars Science Laboratory Mission and Science Investigation
,”
Space Sci. Rev.
,
170
(
1
), pp.
5
56
.
6.
Lewis
,
S.
, and
Humphries
,
M.
,
2005
, “
An Introduction to Bearing Active Preload Systems-Technology and Performance Benefits
,”
Proceedings of the 11th European Space Mechanisms and Tribology Symposium—ESMATS
,
Lucerne, Switzerland
,
Sept. 21–23
, pp.
261
269
.
7.
Klement
,
W.
,
Willens
,
R. H.
, and
Duwez
,
P.
,
1960
, “
Non-Crystalline Structure in Solidified Gold–Silicon Alloys
,”
Nature
,
187
(
4740
), pp.
869
870
.
8.
Chen
,
H. S.
,
1974
, “
Thermodynamic Considerations on the Formation and Stability of Metallic Glasses
,”
Acta Metall.
,
22
(
12
), pp.
1505
1511
.
9.
Ma
,
E.
, and
Zhang
,
Z.
,
2011
, “
Amorphous Alloys: Reflections From the Glass Maze
,”
Nat. Mater.
,
10
(
1
), pp.
10
11
.
10.
Ashby
,
M. F.
, and
Greer
,
A. L.
,
2006
, “
Metallic Glasses as Structural Materials
,”
Scr. Mater.
,
54
(
3
), pp.
321
326
.
11.
Johnson
,
W. L.
,
2002
, “
Bulk Amorphous Metal—An Emerging Engineering Material
,”
JOM
,
54
(
3
), pp.
40
43
.
12.
Telford
,
M.
,
2004
, “
The Case for Bulk Metallic Glass
,”
Mater. Today
,
7
(
3
), pp.
36
43
.
13.
Schroers
,
J.
,
2010
, “
Processing of Bulk Metallic Glass
,”
Adv. Mater.
,
22
(
14
), pp.
1566
1597
.
14.
Löffler
,
J. F.
,
2003
, “
Bulk Metallic Glasses
,”
Intermetallics
,
11
(
6
), pp.
529
540
.
15.
Inoue
,
A.
,
Zhang
,
Q. S.
,
Zhang
,
W.
,
Yubuta
,
K.
,
Son
,
K. S.
, and
Wang
,
X. M.
,
2009
, “
Formation, Thermal Stability and Mechanical Properties of Bulk Glassy Alloys With a Diameter of 20 Mm in Zr-(Ti,Nb)-Al-Ni-Cu System
,”
Mater. Trans.
,
50
(
2
), pp.
388
394
.
16.
Nishiyama
,
N.
,
Takenaka
,
K.
,
Miura
,
H.
,
Saidoh
,
N.
,
Zeng
,
Y.
, and
Inoue
,
A.
,
2012
, “
The World’s Biggest Glassy Alloy Ever Made
,”
Intermetallics
,
30
, pp.
19
24
.
17.
Inoue
,
A.
,
Shen
,
B.
,
Koshiba
,
H.
,
Kato
,
H.
, and
Yavari
,
A. R.
,
2003
, “
Cobalt-Based Bulk Glassy Alloy With Ultrahigh Strength and Soft Magnetic Properties
,”
Nat. Mater.
,
2
(
10
), pp.
661
663
.
18.
Demetriou
,
M. D.
,
Launey
,
M. E.
,
Garrett
,
G.
,
Schramm
,
J. P.
,
Hofmann
,
D. C.
,
Johnson
,
W. L.
, and
Ritchie
,
R. O.
,
2011
, “
A Damage-Tolerant Glass
,”
Nat. Mater.
,
10
(
2
), pp.
123
128
.
19.
Greer
,
A. L.
,
2011
, “
Metallic Glasses: Damage Tolerance at a Price
,”
Nat. Mater.
,
10
(
2
), pp.
88
89
.
20.
Hofmann
,
D. C.
,
Suh
,
J.-Y.
,
Wiest
,
A.
,
Duan
,
G.
,
Lind
,
M.-L.
,
Demetriou
,
M. D.
, and
Johnson
,
W. L.
,
2008
, “
Designing Metallic Glass Matrix Composites With High Toughness and Tensile Ductility
,”
Nature
,
451
(
7182
), pp.
1085
1089
.
21.
Hofmann
,
D. C.
,
2013
, “
Castable Amorphous Metal Mirrors and Mirror Assemblies
,” NASA Tech Briefs, pp.
13
14
.
22.
Ștefanov
,
T.
,
Maraka
,
H.V.R.
,
Meagher
,
P.
,
Rice
,
J.
,
Sillekens
,
W.
, and
Browne
,
D. J.
,
2020
, “
Thin Film Metallic Glass Broad-Spectrum Mirror Coatings for Space Telescope Applications
,”
J. Non-Cryst. Solids X
,
7
, pp.
1
8
.
23.
Hofmann
,
D. C.
,
Hamill
,
L.
,
Christiansen
,
E.
, and
Nutt
,
S.
,
2015
, “
Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple Shield
,”
Adv. Eng. Mater.
,
17
(
9
), pp.
1313
1322
.
24.
Huang
,
X.
,
Ling
,
Z.
,
Liu
,
Z. D.
,
Zhang
,
H. S.
, and
Dai
,
L. H.
,
2012
, “
Amorphous Alloy Reinforced Whipple Shield Structure
,”
Int. J. Impact Eng.
,
42
, pp.
1
10
.
25.
Hamill
,
L.
,
Roberts
,
S.
,
Davidson
,
M.
,
Johnson
,
W. L.
,
Nutt
,
S.
, and
Hofmann
,
D. C.
,
2014
, “
Hypervelocity Impact Phenomenon in Bulk Metallic Glasses and Composites
,”
Adv. Eng. Mater.
,
16
(
1
), pp.
85
93
.
26.
Davidson
,
M.
,
Roberts
,
S.
,
Castro
,
G.
,
Dillon
,
R. P.
,
Kunz
,
A.
,
Kozachkov
,
H.
,
Demetriou
,
M. D.
,
Johnson
,
W. L.
,
Nutt
,
S.
, and
Hofmann
,
D. C.
,
2013
, “
Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding
,”
Adv. Eng. Mater.
,
15
(
1–2
), pp.
27
33
.
27.
Hofmann
,
D. C.
,
Polit-Casillas
,
R.
,
Roberts
,
S. N.
,
Borgonia
,
J.-P.
,
Dillon
,
R. P.
,
Hilgemann
,
E.
,
Kolodziejska
,
J.
, et al.,
2016
, “
Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics
,”
Sci. Rep.
,
6
(
37773
), pp.
1
11
.
28.
Hales
,
S. J.
, and
Stegall
,
D. E.
,
2018
,
Qualifying Bulk Metallic Glass Gear Materials for Spacecraft Applications
, NASA/TP-2018-220246, L-20986, NF1676L-32007,
NASA, NASA Langley Research Center
,
Hampton, VA
.
29.
Hofmann
,
D. C.
,
Bordeenithikasem
,
P.
,
Dawson
,
Z.
,
Hamill
,
L.
,
Dillon
,
R. P.
,
McEnerney
,
B.
,
Nutt
,
S.
, and
Bradford
,
S. C.
,
2018
, “
Investigating Bulk Metallic Glasses as Ball-and-Cone Locators for Spacecraft Deployable Structures
,”
Aerosp. Sci. Technol.
,
82–83
, pp.
513
519
.
30.
Jurewicz
,
A.J.G.
,
Burnett
,
D. S.
,
Wiens
,
R.
,
Friedmann
,
T. A.
,
Hays
,
C.
,
Hohlfelder
,
R.
,
Nishiizumi
,
K.
, et al.,
2003
, “
The Genesis Solar-Wind Collector Materials
,”
Space Sci. Rev.
,
105
, pp.
535
560
.
31.
Celli
,
P.
,
Lamaro
,
A.
,
McMahan
,
C.
,
Bordeenithikasem
,
P.
,
Hofmann
,
D.
, and
Daraio
,
C.
,
2020
, “
Compliant Morphing Structures From Twisted Bulk Metallic Glass Ribbons
,”
arXiv:2004.14446v2 [cond-mat.mtrl-sci]
.
32.
Homer
,
E. R.
,
Harris
,
M. B.
,
Zirbel
,
S. A.
,
Kolodziejska
,
J. A.
,
Kozachkov
,
H.
,
Trease
,
B. P.
,
Borgonia
,
J.-P. C.
,
Agnes
,
G. S.
,
Howell
,
L. L.
, and
Hofmann
,
D. C.
,
2014
, “
New Methods for Developing and Manufacturing Compliant Mechanisms Utilizing Bulk Metallic Glass
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
850
856
.
33.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-CORE)
,”
Mech. Mach. Theory
,
96
, pp.
225
238
.
34.
Mohr
,
M.
, and
Fecht
,
H.-J.
,
2021
, “
Investigating Thermophysical Properties Under Microgravity: A Review
,”
Adv. Eng. Mater.
,
23
(
2
), p.
2001223
.
35.
Mohr
,
M.
,
Hofmann
,
D. C.
, and
Fecht
,
H.-J.
,
2021
, “
Thermophysical Properties of an Fe57.75Ni19.25Mo10C5B8 Glass-Forming Alloy Measured in Microgravity
,”
Adv. Eng. Mater.
,
23
(
3
), p.
2001143
.
36.
Mohr
,
M.
,
Wunderlich
,
R. K.
,
Hofmann
,
D. C.
, and
Fecht
,
H.-J.
,
2019
, “
Thermophysical Properties of Liquid Zr52.5Cu17.9Ni14.6Al1Ti5—Prospects for Bulk Metallic Glass Manufacturing in Space
,”
Npj Microgravity
,
5
(
1
), pp.
1
8
.
37.
Bordeenithikasem
,
P.
,
Roberts
,
S. N.
,
Hofmann
,
D. C.
,
Ratliff
,
J. M.
,
Greene
,
B. R.
,
Bacon
,
J. B.
,
Sohn
,
S.
, and
Schroers
,
J.
,
2020
, “
Measuring Demisability of Bulk Metallic Glasses for Potential Satellite Applications Through Ablation Experiments
,”
Adv. Eng. Mater.
,
22
(
12
), pp.
1
6
.
38.
Salimon
,
A.
,
Bréchet
,
Y.
,
Ashby
,
M. F.
, and
Greer
,
A. L.
,
2004
, “
Selection of Applications for a Material
,”
Adv. Eng. Mater.
,
6
(
4
), pp.
249
265
.
39.
Greer
,
A. L.
,
Rutherford
,
K. L.
, and
Hutchings
,
I. M.
,
2002
, “
Wear Resistance of Amorphous Alloys and Related Materials
,”
Int. Mater. Rev.
,
47
(
2
), pp.
87
112
.
40.
Liao
,
Z.
,
Hua
,
N.
,
Chen
,
W.
,
Huang
,
Y.
, and
Zhang
,
T.
,
2018
, “
Correlations Between the Wear Resistance and Properties of Bulk Metallic Glasses
,”
Intermetallics
,
93
, pp.
290
298
.
41.
Miyoshi
,
K.
, and
Buckley
,
D. H.
,
1984
, “
Mechanical-Contact-Induced Transformation From the Amorphous to the Partially Crystalline State in Metallic Glass
,”
Thin Solid Films
,
118
(
3
), pp.
363
373
.
42.
Abad
,
M. D.
, and
Browne
,
D. J.
,
2020
, “
An Investigation of the Tribological Behavior of Hf-Based Bulk Metallic Glass and Crystalline Alloys
,”
ASME J. Tribol.
,
142
(
10
), p.
101703
.
43.
Keshri
,
A. K.
,
Behl
,
L.
,
Lahiri
,
D.
,
Dulikravich
,
G. S.
, and
Agarwal
,
A.
,
2016
, “
Dry Sliding Wear Behavior of Hafnium-Based Bulk Metallic Glass at Room and Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
25
(
9
), pp.
3931
3937
.
44.
Fleury
,
E.
,
Lee
,
S. M.
,
Ahn
,
H. S.
,
Kim
,
W. T.
, and
Kim
,
D. H.
,
2004
, “
Tribological Properties of Bulk Metallic Glasses
,”
Mater. Sci. Eng. A
,
375–377
, pp.
276
279
.
45.
Ishida
,
M.
,
Takeda
,
H.
,
Nishiyama
,
N.
,
Kita
,
K.
,
Shimizu
,
Y.
,
Saotome
,
Y.
, and
Inoue
,
A.
,
2007
, “
Wear Resistivity of Super-Precision Microgear Made of Ni-Based Metallic Glass
,”
Mater. Sci. Eng. A
,
449–451
, pp.
149
154
.
46.
Duan
,
H. T.
,
Tu
,
J. S.
,
Du
,
S. M.
,
Kou
,
H. C.
,
Li
,
Y.
,
Wang
,
J. P.
,
Chen
,
Z. W.
, and
Li
,
J.
,
2011
, “
Tribological Properties of Ti40Zr25Ni8Cu9Be18 Bulk Metallic Glasses Under Different Conditions
,”
Mater. Des.
,
32
(
8
), pp.
4573
4579
.
47.
Maddala
,
D. R.
,
Mubarok
,
A.
, and
Hebert
,
R. J.
,
2010
, “
Sliding Wear Behavior of Cu50Hf41.5Al8.5 Bulk Metallic Glass
,”
Wear
,
269
(
7
), pp.
572
580
.
48.
Hofmann
,
D. C.
,
Andersen
,
L. M.
,
Kolodziejska
,
J.
,
Roberts
,
S. N.
,
Borgonia
,
J.-P.
,
Johnson
,
W. L.
,
Vecchio
,
K. S.
, and
Kennett
,
A.
,
2017
, “
Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears
,”
Adv. Eng. Mater.
,
19
(
1
), p.
1600541
.
49.
Bhatt
,
J.
,
Kumar
,
S.
,
Dong
,
C.
, and
Murty
,
B. S.
,
2007
, “
Tribological Behaviour of Cu60Zr30Ti10 Bulk Metallic Glass
,”
Mater. Sci. Eng. A
,
458
(
1
), pp.
290
294
.
50.
Hodge
,
A. M.
, and
Nieh
,
T. G.
,
2004
, “
Evaluating Abrasive Wear of Amorphous Alloys Using Nanoscratch Technique
,”
Intermetallics
,
12
(
7
), pp.
741
748
.
51.
Zhang
,
G. Q.
,
Li
,
X. J.
,
Shao
,
M.
,
Wang
,
L. N.
,
Yang
,
J. L.
,
Gao
,
L. P.
,
Chen
,
L. Y.
, and
Liu
,
C. X.
,
2008
, “
Wear Behavior of a Series of Zr-Based Bulk Metallic Glasses
,”
Mater. Sci. Eng. A
,
475
(
1
), pp.
124
127
.
52.
Bakkal
,
M.
,
2010
, “
Sliding Tribological Characteristics of Zr-Based Bulk Metallic Glass Under Lubricated Conditions
,”
Intermetallics
,
18
(
6
), pp.
1251
1253
.
53.
Li
,
G.
,
Wang
,
Y. Q.
,
Wang
,
L. M.
,
Gao
,
Y. P.
,
Zhang
,
R. J.
,
Zhan
,
Z. J.
,
Sun
,
L. L.
,
Zhang
,
J.
, and
Wang
,
W. K.
,
2002
, “
Wear Behavior of Bulk Zr41Ti14Cu12.5Ni10Be22.5 Metallic Glasses
,”
J. Mater. Res.
,
17
(
8
), pp.
1877
1880
.
54.
Ma
,
M. Z.
,
Liu
,
R. P.
,
Xiao
,
Y.
,
Lou
,
D. C.
,
Liu
,
L.
,
Wang
,
Q.
, and
Wang
,
W. K.
,
2004
, “
Wear Resistance of Zr-Based Bulk Metallic Glass Applied in Bearing Rollers
,”
Mater. Sci. Eng. A
,
386
(
1
), pp.
326
330
.
55.
Blau
,
P. J.
,
2001
, “
Friction and Wear of a Zr-Based Amorphous Metal Alloy Under Dry and Lubricated Conditions
,”
Wear
,
250
(
1
), pp.
431
434
.
56.
Liu
,
Y.
,
Yitian
,
Z.
,
Xuekun
,
L.
, and
Liu
,
Z.
,
2010
, “
Wear Behavior of a Zr-Based Bulk Metallic Glass and Its Composites
,”
J. Alloys Compd.
,
503
(
1
), pp.
138
144
.
57.
Wu
,
H.
,
Baker
,
I.
,
Liu
,
Y.
,
Wu
,
X.
, and
Munroe
,
P. R.
,
2012
, “
Effects of Environment on the Sliding Tribological Behaviors of Zr-Based Bulk Metallic Glass
,”
Intermetallics
,
25
, pp.
115
125
.
58.
Peker
,
A.
, and
Johnson
,
W. L.
,
1993
, “
A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
,”
Appl. Phys. Lett.
,
63
(
17
), pp.
2342
2344
.
59.
Parlar
,
Z.
,
Bakkal
,
M.
, and
Shih
,
A. J.
,
2008
, “
Sliding Tribological Characteristics of Zr-Based Bulk Metallic Glass
,”
Intermetallics
,
16
(
1
), pp.
34
41
.
60.
Hua
,
N.
,
Pang
,
S.
,
Li
,
Y.
,
Wang
,
J.
,
Li
,
R.
,
Georgarakis
,
K.
,
Yavari
,
A. R.
,
Vaughan
,
G.
, and
Zhang
,
T.
,
2011
, “
Ni- and Cu-Free Zr–Al–Co–Ag Bulk Metallic Glasses with Superior Glass-Forming Ability
,”
J. Mater. Res.
,
26
(
4
), pp.
539
546
.
61.
Yamasaki
,
M.
,
Kagao
,
S.
, and
Kawamura
,
Y.
,
2005
, “
Thermal Diffusivity and Conductivity of Zr55Al10Ni5Cu30 Bulk Metallic Glass
,”
Scr. Mater.
,
53
(
1
), pp.
63
67
.
62.
Liquidmetal® Technologies, Inc. 20321 Valencia Circle, Lake Forest, CA 92630, USA
.”
63.
Archard
,
J. F.
,
Hirst
,
W.
, and
Edward
,
A. T.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London Ser. Math. Phys. Sci.
,
236
(
1206
), pp.
397
410
.
64.
Li
,
Y.
,
Zhao
,
S.
,
Liu
,
Y.
,
Gong
,
P.
, and
Schroers
,
J.
,
2017
, “
How Many Bulk Metallic Glasses Are There?
,”
ACS Comb. Sci.
,
19
(
11
), pp.
687
693
.
65.
Zhou
,
K.
,
Liu
,
Y.
,
Pang
,
S.
, and
Zhang
,
T.
,
2016
, “
Formation and Properties of Centimeter-Size Zr–Ti–Cu–Al–Y Bulk Metallic Glasses as Potential Biomaterials
,”
J. Alloys Compd.
,
656
, pp.
389
394
.
66.
Alfa Aesar: Pure Elements
,” https://www.alfa.com/en/pure-elements/, Accessed November 3, 2020.
67.
Smart Elements: Pure Elements
,” https://www.smart-elements.com/periodensystem/, Accessed November 3, 2020.
68.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
69.
ASTM International
,
2017
, “
ASTM G99-17, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus
,”
ASTM International
,
West Conshohocken, PA
.
You do not currently have access to this content.