Abstract

Recent research into machines involved in power generation processes has demanded deep investigation of model-based techniques for fault diagnosis and identification. The improvement of critical fault characterization is crucial in the maintenance process effectiveness, hence in time/costs saving, increasing performance and productivity of the whole system. Consequently, this paper deals with a common fault in hydrodynamically lubricated bearings assembled in rotating systems, namely, that of abrasive wear. Research on this topic points to an interesting query about the significance of model detail and complexity and the identification of its characteristic parameters for the important stages of fault diagnosis and fault identification. For this purpose, two models are presented and analyzed in their completeness concerning the fault signature by vibration measurements, as well as the identification of fault critical parameters which determine the machine lifetime estimation, maintenance procedures, and time costs regarding performance and productivity. From this study, the detailing in fault modeling has a substantial impact on fault parameter identification, even if its improvement is not so expressive in fault diagnosis procedures involving standard signal processing techniques of vibration signatures.

References

1.
Papadopoulos
,
C. A.
,
Nikolakopoulos
,
P. G.
, and
Gounaris
,
G. D.
,
2008
, “
Identification of Clearances and Stability Analysis for a Rotor-Journal Bearing System
,”
Mech. Mach. Theory
,
43
(
4
), pp.
411
426
.
2.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
,
Chasalevris
,
A. C.
, and
Papadopoulos
,
C. A.
,
2011
, “
Wear Identification in Rotor-Bearing Systems by Measurements of Dynamic Bearing Characteristics
,”
Comput. Struct.
,
89
(
1–2
), pp.
55
66
.
3.
Jiang
,
F.
,
Wei
,
L.
,
Wang
,
Z.
, and
Zhu
,
Z.
,
2012
, “
Fault Severity Estimation of Rotating Machinery Based on Residual Signals
,”
Adv. Mech. Eng.
, p.
518468
.
4.
Yunusa-Kaltungo
,
A.
,
Sinha
,
J. K.
, and
Nembhard
,
A. D.
,
2015
, “
A Novel Fault Diagnosis Technique for Enhancing Maintenance and Reliability of Rotating Machines
,”
Struct. Health Monit.
,
14
(
6
), pp.
604
621
.
5.
Wang
,
W.
,
Forrester
,
B. D.
, and
Frith
,
P. C.
,
2016
, “
A Unified Approach to Detecting and Trending Changes Caused by Mechanical Faults in Rotating Machinery
,”
Struct. Health Monit.
,
15
(
2
), pp.
204
222
.
6.
Haneef
,
M. D.
,
Randall
,
R. B.
, and
Peng
,
Z.
,
2016
, “
Wear Profile Prediction of IC Engine Bearings by Dynamic Simulation
,”
Wear
,
364–365
, pp.
84
102
.
7.
Lee
,
D.
,
Sun
,
K. H.
,
Kim
,
B.
, and
Kang
,
D.
,
2018
, “
Thermal Behavior of a Worn Tilting Pad Journal Bearing: Thermohydrodynamic Analysis and Pad Temperature Measurement
,”
Tribol. Trans.
,
61
(
6
), pp.
1074
1083
.
8.
Alves
,
D. S.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, pp.
1
16
.
9.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
Mccloskey
,
T. H.
,
1983
, “
Wear of Steam Turbine Journal Bearings at Low Operating Speeds
,”
J. Lubr. Tech.
,
105
(
3
), pp.
313
317
.
10.
Hashimoto
,
H.
,
Wada
,
S.
, and
Nojima
,
K.
,
1986
, “
Performance Characteristics of Worn Journal Bearings in Both Laminar and Turbulent Regimes—Part I: Steady-State Characteristics
,”
ASLE Trans.
,
29
(
4
), pp.
565
571
.
11.
Fillon
,
M.
, and
Bouyer
,
J.
,
2004
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol. Int.
,
37
(
2
), pp.
129
136
.
12.
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
A Study of Friction in Worn Misaligned Journal Bearings Under Severe Hydrodynamic Lubrication
,”
Tribol. Int.
,
41
(
6
), pp.
461
472
.
13.
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2015
, “
Modeling of Hydrodynamic Bearing Wear in Rotor-Bearing Systems
,”
Mech. Res. Commun.
,
69
, pp.
15
23
.
14.
Chun
,
S. M.
, and
Khonsari
,
M. M.
,
2016
, “
Wear Simulation for the Journal Bearings Operating Under Aligned Shaft and Steady Load During Start-Up and Coast-Down Conditions
,”
Tribol. Int.
,
97
, pp.
440
466
.
15.
Sander
,
D. E.
, and
Allmaier
,
H.
,
2018
, “
Starting and Stopping Behaviour of Worn Journal Bearings
,”
Tribol. Int.
,
127
, pp.
478
488
.
16.
Machado
,
T. H.
,
Alves
,
D. S.
, and
Cavalca
,
K. L.
,
2019
, “
Investigation About Journal Bearing Wear Effect on Rotating System Dynamic Response in Time Domain
,”
Tribol. Int.
,
129
, pp.
124
136
.
17.
Machado
,
T. H.
, and
Storti
,
G. C.
,
2020
, “Nonlinear Model for Wear Effects in Hydrodynamic Bearings Applied to Rotating Systems,”
Nonlinear Dynamics of Structures, Systems and Devices
,
W.
Lacarbonara
,
B.
Balachandran
,
J.
Ma
,
J.
Tenreiro Machado
, and
G.
Stepan
, eds.,
Springer
,
Cham
.
18.
Alves
,
D. S.
,
Fieux
,
G.
,
Machado
,
T. H.
,
Keogh
,
P. S.
, and
Cavalca
,
K. L.
,
2021
, “
A Parametric Model to Identify Hydrodynamic Bearing Wear at a Single Rotating Speed
,”
Tribol. Int.
,
153
, p.
106640
.
19.
Arghir
,
M.
,
Alsayed
,
A.
, and
Nicolas
,
D.
,
2002
, “
The Finite Volume Solution of the Reynolds Equation of Lubrication With Film Discontinuities
,”
Int. J. Mech. Sci.
,
44
(
10
), pp.
2119
2132
.
20.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington DC
.
21.
Nordmann
,
R.
,
2014
, “Vibration Control and Failure Diagnosis in Rotating Machinery by Means of Active Magnetic Bearings,”
Active and Passive Vibration Control of Structures
,
P.
Hagedorn
, and
G.
Spelsberg-Korspeter
, eds., CISM International Centre for Mechanical Sciences, vol. 558,
Springer
,
Vienna
, pp.
301
311
.
22.
Cole
,
M. O. T.
,
Keogh
,
P. S.
,
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
,
2004
, “
Towards Fault-Tolerant Active Control of Rotor-Magnetic Bearing Systems
,”
Control Eng. Pract.
,
12
(
4
), pp.
491
501
.
23.
Dimitri
,
A. S.
,
El-Shafei
,
A.
,
Adly
,
A. A.
, and
Mahfoud
,
J.
,
2015
, “
Magnetic Actuator Control of Oil Whip Instability in Bearings
,”
IEEE Trans. Magn.
,
51
(
11
), pp.
1
4
.
24.
El-Shafei
,
A.
,
2021
, “
Integrated Journal Bearing
,”
U.S. Patent Number 10,954,999
.
25.
Sarmah
,
N.
, and
Tiwari
,
R.
,
2020
, “
Dynamic Analysis and Identification of Multiple Fault Parameters in a Cracked Rotor System Equipped With Active Magnetic Bearings: A Physical Model Based Approach
,”
Inverse Prob. Sci. Eng.
,
28
(
8
), pp.
1103
1134
.
26.
Sun
,
J.
,
Zhou
,
H.
, and
Ju
,
Z.
,
2020
, “
Dynamic Stiffness Analysis and Measurement of Radial Active Magnetic Bearing in Magnetically Suspended Molecular Pump
,”
Sci. Rep.
,
10
, pp.
1
16
.
27.
Rutland
,
N. K.
, and
Keogh
,
P. S.
,
1995
, “
Experimental Validation of Active Magnetic Bearing Force Characteristics
,”
University of Bath Report No. 032/1995
.
28.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin/Heidelberg
.
29.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
,
John Wiley & Sons
,
England
.
30.
Lund
,
J. W.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.
31.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
,
2006
,
Nonlinear Programming—Theory and Algorithms
,
John Wiley and Sons
,
Hoboken, NJ
.
32.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
,
1996
,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
Prentice Hall
,
Philadelphia, PA
.
33.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer-Verlag
,
New York
.
34.
Mendes
,
R. U.
,
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2017
, “
Experimental Wear Parameters Identification in Hydrodynamic Bearings via Model-Based Methodology
,”
Wear
,
272–273
, pp.
116
129
.
You do not currently have access to this content.