Abstract

To systematically investigate the behavior of fluid film bearing, the determination of optimal parameters is of utmost importance. The core contributions of this article are as follows: (1) modeling of the conical bearing for spiral grooves with ferrofluid lubrication using current-carrying wire model for the fixed coordinate system, (2) deriving the expressions for the magnetic field model and frictional power loss other than Reynolds equation for ferrofluid lubrication, and (3) evaluation of optimal values of spiral-grooved bearing surface for different cross-sectional shapes and that of the current-carrying wire model for magnetic field generation in ferrofluid lubrication. The generalized minimum RESidual iterative solver and the Newton–Raphson method have facilitated the solution of complex nonlinear finite element (FE) formulated governing equations. Initially, the results have been obtained for determining the optimal values of spiral groove and ferrofluid model attributes. After that, using these optimal values, corresponding performance indicators are evaluated. It was found that there exists a optimum value of different geometric features for distinct cross-sectional shapes of spiral grooves.

References

1.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic. Eng.
,
87
(
3
), pp.
547
555
.
2.
Vijayaraghavan
,
D.
, and
Keith, Jr
,
T. G.
,
1990
, “
Analysis of a Finite Grooved Misaligned Journal Bearing Considering Cavitation and Starvation Effects
,”
ASME J. Tribol.
,
112
(
1
), pp.
60
67
.
3.
Jang
,
G.
, and
Yoon
,
J.
,
2002
, “
Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating Or Stationary Herringbone Groove
,”
ASME J. Tribol.
,
124
(
2
), pp.
297
304
.
4.
Jang
,
G.
, and
Yoon
,
J.
,
2003
, “
Stability Analysis of a Hydrodynamic Journal Bearing With Rotating Herringbone Grooves
,”
ASME J. Tribol.
,
125
(
2
), pp.
291
300
.
5.
Roy
,
L.
,
2009
, “
Thermo-hydrodynamic Performance of Grooved Oil Journal Bearing
,”
Tribol. Int.
,
42
(
8
), pp.
1187
1198
.
6.
Adatepe
,
H.
,
Bıyıklıoglu
,
A.
, and
Sofuoglu
,
H.
,
2011
, “
An Experimental Investigation on Frictional Behavior of Statically Loaded Micro-Grooved Journal Bearing
,”
Tribol. Int.
,
44
(
12
), pp.
1942
1948
.
7.
Adatepe
,
H.
,
Bıyıklıoglu
,
A.
, and
Sofuoglu
,
H.
,
2013
, “
An Investigation of Tribological Behaviors of Dynamically Loaded Non-Grooved and Micro-Grooved Journal Bearings
,”
Tribol. Int.
,
58
, pp.
12
19
.
8.
Chatterton
,
S.
,
Dang
,
P. V.
,
Pennacchi
,
P.
,
De Luca
,
A.
, and
Flumian
,
F.
,
2017
, “
Experimental Evidence of a Two-Axial Groove Hydrodynamic Journal Bearing Under Severe Operation Conditions
,”
Tribol. Int.
,
109
, pp.
416
427
.
9.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2020
, “
Dynamic Force Coefficients Identification on Air-Lubricated Herringbone Grooved Journal Bearing
,”
Mech. Syst. Signal. Process.
,
136
, p.
106498
.
10.
Sinha
,
P.
,
Chandra
,
P.
, and
Kumar
,
D.
,
1993
, “
Ferrofluid Lubrication of Cylindrical Rollers With Cavitation
,”
Acta Mech.
,
98
(
1–4
), pp.
27
38
.
11.
Kuzhir
,
P.
,
2008
, “
Free Boundary of Lubricant Film in Ferrofluid Journal Bearings
,”
Tribol. Int.
,
41
(
4
), pp.
256
268
.
12.
Lin
,
J.-R.
,
Lu
,
R.-F.
,
Lin
,
M.-C.
, and
Wang
,
P.-Y.
,
2013
, “
Squeeze Film Characteristics of Parallel Circular Disks Lubricated by Ferrofluids With Non-Newtonian Couple Stresses
,”
Tribol. Int.
,
61
, pp.
56
61
.
13.
Tarapov
,
I.
,
1972
, “
Motion of a Magnetizable Fluid in the Lubrication Film of a Cylindrical Bearing
,”
Magnitnaia Gidrodinamika
,
8
(
4
), pp.
19
24
.
14.
Sorge
,
F.
,
1987
, “
A Numerical Approach to Finite Journal Bearings Lubricated With Ferrofluid
,”
ASME J. Tribol.
,
109
(
1
), pp.
77
82
.
15.
Zhang
,
Y.
,
1991
, “
Static Characteristics of Magnetized Journal Bearing Lubricated With Ferrofluid
,”
ASME J. Tribol.
,
113
(
3
), pp.
533
537
.
16.
Chandra
,
P.
,
Sinha
,
P.
, and
Kumar
,
D.
,
1992
, “
Ferrofluid Lubrication of a Journal Bearing Considering Cavitation
,”
Tribol. Trans.
,
35
(
1
), pp.
163
169
.
17.
Osman
,
T.
,
Nada
,
G.
, and
Safar
,
Z.
,
2001
, “
Static and Dynamic Characteristics of Magnetized Journal Bearings Lubricated With Ferrofluid
,”
Tribol. Int.
,
34
(
6
), pp.
369
380
.
18.
Osman
,
T.
,
Nada
,
G.
, and
Safar
,
Z.
,
2001
, “
Effect of Using Current-Carrying-Wire Models in the Design of Hydrodynamic Journal Bearings Lubricated With Ferrofluid
,”
Tribology Lett.
,
11
(
1
), pp.
61
70
.
19.
Osman
,
T.
,
Nada
,
G.
, and
Safar
,
Z.
,
2003
, “
Different Magnetic Models in the Design of Hydrodynamic Journal Bearings Lubricated With Non-Newtonian Ferrofluid
,”
Tribology Lett.
,
14
(
3
), pp.
211
223
.
20.
Nada
,
G.
, and
Osman
,
T.
,
2007
, “
Static Performance of Finite Hydrodynamic Journal Bearings Lubricated by Magnetic Fluids With Couple Stresses
,”
Tribology Lett.
,
27
(
3
), pp.
261
268
.
21.
Laghrabli
,
S.
,
El Khlifi
,
M.
,
Nabhani
,
M.
, and
Bou-Saïd
,
B.
,
2017
, “
Static Characteristics of Ferrofluid Finite Journal Bearing Considering Rotational Viscosity Effect
,”
Lubrication Sci.
,
29
(
4
), pp.
203
226
.
22.
Patel
,
N. S.
,
Vakharia
,
D.
, and
Deheri
,
G.
,
2017
, “
Hydrodynamic Journal Bearing Lubricated With a Ferrofluid
,”
Indus. Lubrication Tribol.
,
69
(
5
), pp.
754
760
.
23.
Nypan
,
L. J.
,
Hamrock
,
B. J.
,
Scibbe
,
H. W.
, and
Anderson
,
W. J.
,
1972
, “
Optimization of Conical Hydrostatic Bearing for Minimum Friction
,”
ASME J. Lubr. Tech.
,
94
(
2
), pp.
136
142
.
24.
Bootsma
,
J.
,
1975
, “
Spherical and Conical Spiral Groove Bearings—Part I: Theory
,”
ASME J. Lubr. Tech.
,
97
(
2
), pp.
236
242
.
25.
El-Kayar
,
A.
,
Salem
,
E.
,
Khalil
,
M.
, and
Bedewi
,
M.
,
1981
, “
Behaviour of Externally Pressurized Conical Bearings Lubricated With Non-Newtonian Fluids
,”
Wear
,
67
(
2
), pp.
133
145
.
26.
El-Kayar
,
A.
,
Salem
,
E.
,
Khalil
,
M.
, and
Bedewi
,
M.
,
1981
, “
Experimental Investigation of Conical Bearings Lubricated With Non-Newtonian Fluids
,”
Wear
,
67
(
2
), pp.
157
165
.
27.
Kumar
,
D.
,
Sinha
,
P.
, and
Chandra
,
P.
,
1992
, “
Ferrofluid Squeeze Film for Spherical and Conical Bearings
,”
Int. J. Eng. Sci.
,
30
(
5
), pp.
645
656
.
28.
Kumar
,
D.
,
Chandra
,
P.
, and
Sinha
,
P.
,
1993
, “
Ferrofluid Lubrication of Externally Pressurized Circular Plates and Conical Bearings
,”
Int. J. Eng. Sci.
,
31
(
4
), pp.
593
604
.
29.
Yoshimoto
,
S.
,
Oshima
,
S.
,
Danbara
,
S.
, and
Shitara
,
T.
,
2002
, “
Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles
,”
ASME J. Tribol.
,
124
(
2
), pp.
398
405
.
30.
Pan
,
C. H.
, and
Kim
,
D.
,
2006
, “
Stability Characteristics of a Rigid Rotor Supported by a Gas Lubricated Spiral-Groove Conical Bearing
,”
International Joint Tribology Conference
, Vol.
42592
, pp.
1271
1279
.
31.
Korneev
,
A. Y.
,
2012
, “
Static Characteristics of Conical Hydrodynamic Bearings Lubricated by Turbine Oil
,”
Russian Eng. Res.
,
32
(
3
), pp.
251
255
.
32.
Miyake
,
S.
, and
Takahashi
,
S.
,
1985
, “
Sliding Bearing Lubricated With Ferromagnetic Fluid
,”
ASLE Trans.
,
28
(
4
), pp.
461
466
.
33.
Uhlmann
,
E.
,
Spur
,
G.
,
Bayat
,
N.
, and
Patzwald
,
R.
,
2002
, “
Application of Magnetic Fluids in Tribotechnical Systems
,”
J. Magn. Magn. Mater.
,
252
, pp.
336
340
.
34.
Torres-Díaz
,
I.
, and
Rinaldi
,
C.
,
2014
, “
Recent Progress in Ferrofluids Research: Novel Applications of Magnetically Controllable and Tunable Fluids
,”
Soft. Matter.
,
10
(
43
), pp.
8584
8602
.
35.
Sharma
,
S. C.
, and
Kumar
,
A.
,
2021
, “
On the Behaviour of Roughened Conical Hybrid Journal Bearing System Operating With MR Lubricant
,”
Tribol. Int.
,
156
, p.
106824
.
36.
Hong
,
G.
,
Xinmin
,
L.
, and
Shaoqi
,
C.
,
2009
, “
Theoretical and Experimental Study on Dynamic Coefficients and Stability for a Hydrostatic/Hydrodynamic Conical Bearing
,”
ASME J. Tribol.
,
131
(
4
), p.
041701
.
37.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
.
38.
Rowe
,
W. B.
,
2012
, “
Hydrostatic, Aerostatic and Hybrid Bearing Design
,
Elsevier
,
New York
.
39.
Yoshimoto
,
S.
,
Rowe
,
W.
, and
Ives
,
D.
,
1988
, “
A Theoretical Investigation of the Effect of Inlet Pocket Size on the Performance of Hole Entry Hybrid Journal Bearings Employing Capillary Restrictors
,”
Wear
,
127
(
3
), pp.
307
318
.
40.
Hu
,
R.
, and
Xu
,
C.
,
2017
, “
Influence of Magnetic Fluids Cohesion Force and Squeeze Dynamic Effect on the Lubrication Performance of Journal Bearing
,”
Adv. Mech. Eng.
,
9
(
9
), p.
1687814017732671
.
41.
Urreta
,
H.
,
Leicht
,
Z.
,
Sanchez
,
A.
,
Agirre
,
A.
,
Kuzhir
,
P.
, and
Magnac
,
G.
,
2010
, “
Hydrodynamic Bearing Lubricated With Magnetic Fluids
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1491
1499
.
42.
Ji
,
J.
,
Fu
,
Y.
, and
Bi
,
Q.
,
2014
, “
Influence of Geometric Shapes on the Hydrodynamic Lubrication of a Partially Textured Slider With Micro-Grooves
,”
ASME J. Tribol.
,
136
(
4
), p.
041702
.
43.
Stout
,
K.
, and
Rowe
,
W.
,
1974
, “
Externally Pressurized Bearingsdesign for Manufacture Part 1 Journal Bearing Selection
,”
Tribology
,
7
(
3
), pp.
98
106
.
44.
Etsion
,
I.
,
2013
, “
Modeling of Surface Texturing in Hydrodynamic Lubrication
,”
Friction
,
1
(
3
), pp.
195
209
.
You do not currently have access to this content.