Abstract

Stepwise cavitation erosion is used to study pits formed by microjets. The aim is to determine the role of the pit in the development of cavitation erosion damage, including geometrical features of the pitted area and pit counting. The study also identified the dominant feature in the development of cavitation damage. We used a vibratory cavitation apparatus to perform cavitation erosion damage on a stainless steel, SUS 304, in tap water with scanning electron microscopy (SEM) at 5-min intervals from t = 0 min to t = 45 min. We then analyzed and characterized the pits formed by impacting the surface with a microjet. These results showed that individual pits and clusters of pits are characterized by a black spot surrounded by plastic deformation, and both are irregular in shape. This suggests that the microjet is hitting the wear surface in an oblique direction. Over the course of the test time, neither the shape nor the size of the microjet pits and their clusters change; pit diameters approximately 2 μm or less. The area of pits and their clusters does not exceed 1% of the worn surface. All these features demonstrate that the pit and its clusters do not impact the evolution of cavitation damage. Our results also indicated that slip bands were caused by a shock wave. Slip bands are large (>10 μm) and account for about 30% of the wear surface. This confirms that slip bands are predominantly responsible for the development of cavitation; the predominant cavitation mechanism is fatigue due to multiple shock waves.

References

1.
ASTM G32-16
,
2016
,
Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,
ASTM International
,
West Conshohocken, PA
.
2.
Ser Hydraul Mach
,
2000
,
Cavitation of Hydraulic Machinery
, Vol.
1
, p.
492
.
3.
Hammitt
,
F. G.
,
1980
,
Cavitation and Multiphase Flow Phenomena
,
McGraw-Hill
,
New York
.
4.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
5.
Preece
,
C. M.
,
1981
, “A Metallurgical Approach to Cavitation Erosion,”
Adv. Mech. Phys. Surfaces
,
1
,
R. M.
Latanision
, and
R. J.
Courtel
, eds.,
Harwood Academic Publishers
,
Chur, Switzerland; New York
, pp.
199
253
.
6.
Karimi
,
A.
, and
Avellan
,
F.
,
1986
, “
Comparison of Erosion Mechanisms in Different Types of Cavitation
,”
Wear
,
113
(
3
), pp.
305
322
.
7.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
, and
Oba
,
R.
,
1994
, “
Fatigue Failure of SUS 304 Caused by Vibratory Cavitation Erosion
,”
Wear
,
177
(
2
), pp.
129
137
.
8.
Richman
,
R. H.
, and
McNaughton
,
W. P.
,
1990
, “
Correlation of Cavitation Erosion Behavior With Mechanical Properties of Metals
,”
Wear
,
140
(
1
), pp.
63
82
.
9.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2014
, “
Stepwise Erosion as a Method for Investigating the Wear Mechanisms at Different Impact Angles in Slurry Erosion
,”
ASME J. Tribol.
,
136
(
2
), p.
021608
.
10.
Haines
,
J. R.
,
Farrell
,
K.
,
Hunn
,
J. D.
,
Lousteau
,
D. C.
,
Mansur
,
L. K.
,
McManamy
,
T. J.
,
Pawel
,
S. J.
, and
Riemer
,
B. W.
,
2002
, “
Summary of Mercury Target Pitting Issue
,” Technical Report, SNS-101060100-TR0004-R00.
11.
Karrab
,
S. A.
,
Doheim
,
M. A.
,
Mohammed
,
M. S.
, and
Ahmed
,
S. M.
,
2012
, “
Investigation of the Ring Area Formed Around Cavitation Erosion Pits on the Surface of Carbon Steel
,”
Tribol. Lett.
,
45
(
3
), pp.
437
444
.
12.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
,
Ito
,
Y.
, and
Oba
,
R.
,
1991
, “
Scanning Electron Microscopy Observation on the Incubation Period of Vibratory Cavitation Erosion
,”
Wear
,
142
(
2
), pp.
303
314
.
13.
Ahmed
,
S. M.
,
1991
,
Experimental Studies on the Mechanism of Vibratory Cavitation Erosion
,
Tohoku University
,
Sendai, Japan
.
14.
Miyazaki
,
K.
,
Ahmed
,
M. S.
, and
Oba
,
R.
,
1993
, “
High-Speed Observations of the Vibratory Cavitation Accompanying Hard Erosion
,”
JSME Int. J., Ser. B
,
36
(
4
), pp.
511
516
.
15.
Karrab
,
S. A.
,
Doheim
,
M. A.
,
Aboraia
,
M. S.
, and
Ahmed
,
S. M.
,
2012
, “
Study of Cavitation Erosion Pits on 1045 Carbon Steel Surface in Corrosive Waters
,”
ASME J. Tribol.
,
134
(
1
), p.
011602
.
16.
Abouel-Kasem
,
A.
,
Ezz El-Deen
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2009
, “
Investigation Into Cavitation Erosion Pits
,”
ASME J. Tribol.
,
131
(
3
), p.
031605
.
17.
Karrab
,
S.
,
Aboraia
,
M.
,
Doheim
,
M.
, and
Ahmed
,
S. M.
,
2014
, “
Investigation into Morphology of Cavitation Erosion-Corrosion Pits on the Surface of Carbon Steel
,”
Int. J. Eng. Innov. Technol.
,
1
(
1
), pp.
28
34
.
18.
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2012
, “
Bubble Structures Between Two Walls in Ultrasonic Cavitation Erosion
,”
ASME J. Tribol.
,
134
(
2
), p.
021702
.
19.
Plesset
,
M. S.
, and
Michel
,
T. P.
,
1956
, “
On The Stability of the Spherical Shape of Vapor Cavity in a Liquid
,”
Q. Appl. Math.
,
13
(
4
), pp.
419
430
.
20.
Saleh
,
B.
,
El-Deen
,
E.
,
Ahmed
,
A.
, and
M
,
S.
,
2011
, “
Effect of Liquid Viscosity on Cavitation Damage Based on Analysis of Erosion Particles
,”
J. Eng. Sci.
,
39
(
2
), pp.
327
336
.
21.
Ahmed
,
S. M.
,
Hokkirigawa
,
K.
,
Oba
,
R.
, and
Kikuchi
,
K.
,
1991
, “
SEM Observation of the Vibratory Cavitation-Fracture Mode During the Incubation Period and the Small Roughness Effect
,”
JSME Int. J., Ser. II
,
34
(
3
), p.
298
303
.
22.
Ahmed
,
M. S.
,
Hokkirigawa
,
K.
,
Kikuchi
,
K.
,
Higuchi
,
J.
, and
Oba
,
R.
,
1993
, “
SEM Studies of Particles Produced by Cavitation Erosion
,”
JSME Int. J., Ser. B
,
36
(
4
), pp.
517
523
.
23.
Ahmed
,
S. M.
,
Ito
,
Y.
,
Chiguchi
,
J.
, and
Oba
,
R.
,
1990
, “
A Peculiar Behavior of Cavitation-Nuclei Distributions in Sample Water Under Vibratory Erosion Tests
,”
JSME Int. J., Ser. II
,
33
(
4
), pp.
629
633
.
24.
Ahmed
,
S. M.
,
1994
, “
Gas Content Effects Upon Cavitation Erosion—A Review
,”
Bull. Fac. Eng., Assiut Univ.
,
22
(
2
), pp.
77
85
.
25.
Ahmed
,
S. M.
,
1997
, “
Investigation of the Temperature Effects on Induced Impact Pressure and Cavitation Erosion
,”
Wear
,
218
(
1
), pp.
119
127
.
26.
Saleh
,
B.
,
Abouel-Kasem
,
A.
,
El-Deen
,
A. E.
, and
Ahmed
,
S. M.
,
2010
, “
Investigation of Temperature Effects on Cavitation Erosion Behavior Based on Analysis of Erosion Particles
,”
ASME J. Tribol.
,
132
(
4
), p.
041601
.
27.
Abouel-Kasem
,
A.
,
Saleh
,
B.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2016
, “
Characterization of Cavitation Eroded Surfaces at Different Temperatures Using Wavelet Method
,”
ASME J. Tribol.
,
139
(
3
), p.
041603
.
28.
Oba
,
R.
,
1990
, “
Several Trials in the Search for a Complete Cavitation Concept
,”
JSME Int. J., Ser. II
,
33
(
4
), pp.
621
628
.
29.
Jackson
,
F. J.
,
1960
, “
Sonically Induced Microstreaming Near Plane Boundary. II. Acoustic Streaming Field
,”
J. Acoust. Soc. Am.
,
2
(
11
), pp.
1387
1395
.
30.
Mettin
,
R.
,
2005
, “
Bubble Structures in Acoustic Cavitation
,”
Bubble Part. Dyn. Acoust. Fields
, pp.
1
36
.
31.
Chen
,
H.
,
Li
,
J.
,
Liu
,
S.
,
Chen
,
D.
, and
Wang
,
J.
,
2008
, “
Affected Zone Generated Around the Erosion Pit on Carbon Steel Surface at the Incipient Stage of Vibration Cavitation
,”
Chin. Sci. Bull.
,
5
(
53
),, pp.
943
947
.
32.
Haosheng
,
C.
,
Jiang
,
L.
,
Darong
,
C.
, and
Jiadao
,
W.
,
2008
, “
Damages on Steel Surface at the Incubation Stage of the Vibration Cavitation Erosion in Water
,”
Wear
,
265
(
5–6
), pp.
692
698
.
33.
Haosheng
,
C.
, and
Jiang
,
L.
,
2009
, “
A Ring Area Formed Around the Erosion Pit on 1Cr18Ni9Ti Stainless Steel Surface in Incipient Cavitation Erosion
,”
Wear
,
266
(
7–8
), pp.
884
887
.
34.
Chen
,
H.
,
Li
,
J.
, and
Liu
,
S. H.
,
2009
, “
Thermal Effect at the Incipient Stage of Cavitation Erosion on A Stainless Steel
,”
J. Fluids Eng.
,
231
, pp.
1
3
.
35.
Chen
,
H.
,
2010
, “
Iridescent Rings Around Cavitation Erosion Pits on Surface of Mild Carbon Steel
,”
Wear
,
269
(
7–8
), pp.
602
607
.
36.
Li
,
J.
,
Wu
,
B.
, and
Chen
,
H.
,
2013
, “
Formation and Development of Iridescent Rings Around Cavitation Erosion Pits
,”
Tribol. Lett.
,
52
(
3
), pp.
495
500
.
37.
Yan
,
D.
,
Wang
,
J.
,
Liu
,
F.
, and
Chen
,
D.
,
2013
, “
The Generation of Nano Sandwich Sheets in Ring Area Around Cavitation Erosion Pit on the Surface of Carbon Steel
,”
Wear
,
303
(
1–2
), pp.
419
425
.
38.
Ye
,
L.
,
Zhu
,
X.
, and
Wei
,
X.
,
2020
, “
Damage Characteristics and Surface Description of Near-Wall Materials Subjected to Ultrasonic Cavitation
,”
Ultrason. Sonochem.
,
67
, p.
105175
.
39.
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2009
, “
Characterizing Cavitation Erosion Particles by Analysis of SEM Image
,”
Tribol. Int.
,
42
(
1
), pp.
130
136
.
40.
Abouel-Kasem
,
A.
,
Baha
,
S.
, and
Ahmed
,
S. M.
,
2008
, “
Quantitative Analysis of Cavitation Erosion Particle Morphology in Dilute Emulsions
,”
ASME J. Tribol.
,
130
(
4
), p.
041603
.
41.
Abouel-Kasem
,
A.
, and
Ahmed
,
S. M.
,
2008
, “
Cavitation Erosion Mechanism Based on Analysis of Erosion Particles
,”
ASME J. Tribol.
,
130
(
3
), p.
031601
.
You do not currently have access to this content.