Abstract

In this paper, a multilayer body model in which material properties and wear coefficient change with node coordinates is proposed, so that the wear profile is not restricted by the singularity of the interface of the coated contact pairs. The conversion rate of the adhered particles was obtained to describe the growth and expansion of the debris at the fretting interface based on experiments, and the wear model of coated contact pair considering the dynamic evolution of the debris layer was established. By comparing the previous experimental and computational results, the wear calculation method proposed in this paper is more reasonable to predict the wear profile of the coated contact pair. In addition, the influence of the debris layer on the wear depth, friction width, and contact pressure in the fretting process is analyzed, indicating that the existence of the debris layer can delay the wear process. Finally, the fretting wear life of the SCMV steel contact pair deposited with the W-DLC coating is estimated.

References

1.
Waterhouse
,
R. B.
,
1972
,
Fretting Corrosion
, 1st ed.,
Pergamon Press
,
Oxford, UK
.
2.
Miyoshi
,
K.
,
Lerch
,
B. A.
, and
Draper
,
S. L.
,
2003
, “
Fretting Wear of Ti-48Al-2Cr-2Nb
,”
Tribol. Int.
,
36
(
2
), pp.
145
153
.
3.
Ding
,
J.
,
McColl
,
I. R.
, and
Leen
,
S. B.
,
2007
, “
The Application of Fretting Wear Modelling to a Spline Coupling
,”
Wear
,
262
(
9–10
), pp.
1205
1216
.
4.
Sung
,
J. H.
,
Kim
,
T. H.
, and
Kim
,
S. S.
,
2001
, “
Fretting Damage of TiN Coated Zircaloy-4 Tube
,”
Wear
,
250
(
1–12
), pp.
658
664
.
5.
Zou
,
L.
,
Zeng
,
D.
,
Wang
,
J.
,
Lu
,
L.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2020
, “
Effect of Plastic Deformation and Fretting Wear on the Fretting Fatigue of Scaled Railway Axles
,”
Int. J. Fatigue
,
132
(
5
), pp.
105371.1
105371.12
.
6.
Azevedo
,
C. R. F.
, and
Cescon
,
T.
,
2002
, “
Failure Analysis of Aluminum Cable Steel Reinforced (ACSR) Conductor of the Transmission Line Crossing the Paraná River
,”
Eng. Fail. Anal.
,
9
(
6
), pp.
645
664
.
7.
Mattei
,
L.
,
Di Puccio
,
F.
,
Piccigallo
,
B.
, and
Ciulli
,
E.
,
2011
, “
Lubrication and Wear Modelling of Artificial Hip Joints: A Review
,”
Tribol. Int.
,
44
(
5
), pp.
532
549
.
8.
Shima
,
M.
,
Okado
,
J.
,
McColl
,
I. R.
,
Waterhouse
,
R. B.
,
Hasegawa
,
T.
, and
Kasaya
,
M.
,
1999
, “
The Influence of Substrate Material and Hardness on the Fretting Behaviour of TiN
,”
12th International Conference on Wear of Materials
,
Atlanta, GA
.
9.
Schouterden
,
K.
,
Blanpain
,
B.
,
Celis
,
J. P.
, and
Vingsbo
,
O.
,
1995
, “
Fretting of Titanium Nitride and Diamond-Like Carbon Coatings at High Frequencies and Low Amplitude
,”
10th International Conference on Wear of Materials
,
Boston, MA
.
10.
Huq
,
M. Z.
, and
Celis
,
J. P.
,
2010
, “
Fretting Wear of Multilayered (Ti, Al) N/TiN Coatings in Air of Different Relative Humidity
,”
12th International Conference on Wear of Materials
,
Atlanta, GA
.
11.
Leonard
,
B. D.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2012
, “
A Numerical and Experimental Investigation of Fretting Wear and a New Procedure for Fretting Wear Maps
,”
Tribol. Trans.
,
55
(
3
), pp.
313
324
.
12.
Leonard
,
B. D.
,
Patil
,
P.
,
Slack
,
T. S.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2011
, “
Fretting Wear Modeling of Coated and Uncoated Surfaces Using the Combined Finite-Discrete Element Method
,”
ASME J. Tribol.
,
133
(
2
), p.
021601
.
13.
Yuan
,
H.
,
Song
,
J.
, and
Schinow
,
V.
,
2018
, “
A Modification of the Calculation Model for the Prediction of the Wear of Silver-Coated Electrical Contacts With Consideration of Third Bodies
,”
2018 IEEE Holm Conference on Electrical Contacts
,
Albuquerque, NM
, Oct. 14–18, pp.
310
316
.
14.
Mohd Tobi
,
A. L.
,
Ding
,
J.
,
Pearson
,
S.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
,
2010
, “
The Effect of Gross Sliding Fretting Wear on Stress Distributions in Thin W-DLC Coating Systems
,”
Tribol. Int.
,
43
(
10
), pp.
1917
1932
.
15.
Mohd Tobi
,
A. L.
,
Shipway
,
P. H.
, and
Leen
,
S. B.
,
2011
, “
Gross Slip Fretting Wear Performance of a Layered Thin W-DLC Coating: Damage Mechanisms and Life Modelling
,”
Wear
,
271
(
9–10
), pp.
1572
1584
.
16.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
17.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
18.
Wu
,
J. J. S.
,
Lin
,
Y. T.
,
Lai
,
Y. L.
, and
Ben Jar
,
P. Y.
,
2017
, “
A Finite Element Approach by Contact Transformation for the Prediction of Structural Wear
,”
ASME J. Tribol.
,
139
(
2
), p.
021602
.
19.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2014
, “
Finite Element Analysis of Stress Singularity in Partial Slip and Gross Sliding Regimes in Fretting Wear
,”
Wear
,
321
, pp.
53
63
.
20.
Leonard
,
B. D.
,
2012
, “
An Experimental and Numerical Investigation of the Effect of Coatings and the Third Body on Fretting Wear
,”
Doctoral thesis
,
Purdue University
,
West Lafayette, IN
.
21.
Berthier
,
Y.
,
Vincent
,
L.
, and
Godet
,
M.
,
1988
, “
Velocity Accommodation in Fretting
,”
Wear
,
125
(
1–2
), pp.
25
38
.
22.
Ding
,
J.
,
McColl
,
I. R.
,
Leen
,
S. B.
, and
Shipway
,
P. H.
,
2007
, “
A Finite Element Based Approach to Simulating the Effects of Debris on Fretting Wear
,”
Wear
,
263
(
1–6
), pp.
481
491
.
23.
Ding
,
J.
,
Leen
,
S. B.
,
Williams
,
E. J.
, and
Shipway
,
P. H.
,
2009
, “
A Multi-Scale Model for Fretting Wear With Oxidation-Debris Effects
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
223
(
7
), pp.
1019
1031
.
24.
Yue
,
T.
, and
Wahab
,
M. A.
,
2016
, “
A Numerical Study on the Effect of Debris Layer on Fretting Wear
,”
Materials
,
9
(
7
), pp.
597
597
.
25.
Done
,
V.
,
Kesavan
,
D.
,
Krishna
,
R. M.
,
Chaise
,
T.
, and
Nelias
,
D.
,
2017
, “
Semi-Analytical Fretting Wear Simulation Including Wear Debris
,”
Tribol. Int.
,
109
, pp.
1
9
.
26.
Wang
,
S.
,
Yue
,
T.
, and
Wahab
,
M. A.
,
2020
, “
Multiscale Analysis of the Effect of Debris on Fretting Wear Process Using a Semi-Concurrent Method
,”
Comput. Mater. Contin.
,
62
(
1
), pp.
17
35
.
27.
Arnaud
,
P.
, and
Fouvry
,
S.
,
2018
, “
A Dynamical FEA Fretting Wear Modeling Taking Into Account the Evolution of Debris Layer
,”
Wear
,
412
, pp.
92
108
.
28.
Arnaud
,
P.
,
Fouvry
,
S.
, and
Garcin
,
S.
,
2017
, “
A Numerical Simulation of Fretting Wear Profile Taking Account of the Evolution of Third Body Layer
,”
Wear
,
376
, pp.
1475
1488
.
29.
Arnaud
,
P.
, and
Fouvry
,
S.
,
2020
, “
Modeling the Fretting Fatigue Endurance From Partial to Gross Slip: The Effect of Debris Layer
,”
9th International Symposium on Fretting Fatigue (ISFF)
,
Seville, Spain
.
30.
Zhang
,
L.
,
Ma
,
S.
,
Liu
,
D.
,
Zhou
,
B.
, and
Markert
,
B.
,
2019
, “
Fretting Wear Modelling Incorporating Cyclic Ratcheting Deformations and the Debris Evolution for Ti-6Al-4V
,”
Tribol. Int.
,
136
, pp.
317
331
.
31.
Mary
,
C.
, and
Fouvry
,
S.
,
2007
, “
Numerical Prediction of Fretting Contact Durability Using Energy Wear Approach: Optimisation of Finite-Element Model
,”
Wear
,
263
(
1–6
), pp.
444
450
.
32.
Colombie
,
C.
,
Berthier
,
Y.
,
Floquet
,
A.
, and
Godet
,
M.
,
1984
, “
Fretting: Load Carrying Capacity of Wear Debris
,”
ASME J. Tribol.
,
106
(
2
), pp.
194
201
.
33.
US:HKS Inc.
, “
Abaqus User’s Manual (Version 6.14. RI)
,” http://pcmicro-2kadmgd:2080/v6.14/books/sub/default.htm
34.
Simo
,
J. C.
, and
Laursen
,
T. A.
,
1992
, “
An Augmented Lagrangian Treatment of Contact Problems Involving Friction
,”
Comput. Struct.
,
42
(
1
), pp.
97
116
.
35.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
.
You do not currently have access to this content.