Abstract

Comminution devices use about 50% of the total energy in mine sites due to low efficiency and wastefulness of their operations. This study aims to provide a framework for improving efficiency of comminution processes by discretizing the relative distribution of various energy forms in the comminution process. Comminution theories are mainly based on the ore's size distribution and consequently do not adequately address other imperative phenomena such as media wear and energy utilization efficiency. We suggest an energy-based methodology that provides a common ground for comparing seemingly different aspects involved in comminution, most notably ore breakage, the media wear, and energy utilization efficiency. The experimental tests here were conducted using the Steel Wheel Abrasion Test (SWAT) highlighting the relationship between test variables, including media wear, ore breakage and energy efficiency. In addition, preliminary experimental results show interesting connections between various energy forms involved in comminution that is of high use in future design and performance optimization of comminution devices.

References

1.
Morrison
,
R.
, and
Cleary
,
P.
,
2008
, “
Towards a Virtual Comminution Machine
,”
Miner. Eng.
,
21
(
11
), pp.
770
781
.
2.
deChambeau
,
2008
,
McGraw-Hill Encyclopedia of Science and Technology
, Reference & User Services Quarterly,
47
(
3
), pp.
292
293
.
3.
Baloyi
,
V. D.
, and
Meyer
,
L. D.
,
2020
, “
The Development of a Mining Method Selection Model Through a Detailed Assessment of Multi-Criteria Decision Methods
,”
Results Eng.
,
8
, pp.
1
19
.
4.
Fuerstenau
,
D.
, and
Abouzeid
,
A.
,
2002
, “
The Energy Efficiency of Ball Milling in Comminution
,”
Int. J. Miner. Process.
,
67
(
1–4
), pp.
161
185
.
5.
Wijk
,
J. M.
, and
Hoog
,
E.
,
2020
, “
Size Reduction of CCZ Polymetallic Nodules Under Repeated Impact Fragmentation
,”
Results Eng.
,
7
, pp.
1
7
.
6.
Rumpf
,
H.
,
1973
, “
Physical Aspects of Comminution and new Formulation of a law of Comminution
,”
Powder Technol.
,
7
(
3
) pp.
145
159
.
7.
Kick
,
F.
,
1885
, “
Das Gesetz der proportionalen Widerstände und seine Anwendungen
,”
A Felix
.
8.
Bond
,
F.
,
1952
, “
The third theory of comminution. Trans
,”,
AIME
,
193
(
2
), p.
484
.
9.
Uzi
,
A.
, and
Levy
,
A.
,
2021
, “
Energy Absorption in Particle Breakage Under Impact Load
,”
Powder Technol.
,
377
, pp.
308
323
.
10.
Rosales-Marín
,
G.
,
Andrade
,
J.
,
Alvardo
,
G.
,
Delgadillo
,
J. A.
, and
Tuzcu
,
E. T.
,
2019
, “
Study of Lifter Wear and Breakage Rates for Different Lifter Geometries in T Tumbling Mill: Experimental and Simulation Analysis Using Population Balance Model
,”
Miner. Eng.
,
141
(
2
), p.
105857
.
11.
Zhang
,
C.
,
Nguyen
,
G. D.
, and
Kodikara
,
J.
,
2016
, “
An Application of Breakage Mechanics for Predicting Energy–Size Reduction Relationships in Comminution
,”
Powder Technol.
,
287
, pp.
121
130
.
12.
Fuerstenau
,
D. W.
,
De
,
A.
, and
Kapur
,
P. C.
,
2004
, “
Linear and Nonlinear Particle Breakage Processes in Comminution Systems
,”
Int. J. Miner. Process.
,
74
(
Supplement
), pp.
S317
S327
.
13.
Tarasiewicz
,
S.
, and
Radziszewski
,
P.
,
1990
, “
Comminution Energies Part III: Bond's law and Breakage Energy
,”
Mater. Chem. Playsets
,
25
, pp.
21
25
.
14.
Campos
,
T. M.
,
Bueno
,
G.
,
Rodriguez
,
V. A.
,
Bottcher
,
A. C.
,
Kwade
,
A.
,
Mayerhofer
,
F.
, and
Avares
,
L. M.
,
2021
, “
Relationships Between Particle Breakage Characteristics and Comminution Response of Fine Iron ore Concentrates
,”
Miner. Eng.
,
164
(
7
), pp.
106818
.
15.
Parapari
,
P. S.
,
Parian
,
M.
, and
Rosenkranz
,
J.
,
2020
, “
Breakage Process of Mineral Processing Comminution Machines–An Approach to Liberation
,”
Adv. Powder Technol.
,
31
, (
9
), pp.
3669
3685
.
16.
Tarasiewicz
,
S.
, and
Radziszewski
,
P.
,
1990
, “
Comminution Energetics Part III: Bond’s law and Breakage Energy
,”
Mater. Chem. Phys.
,
25
(
1
), pp.
21
25
.
17.
Agboola
,
O.
,
Babatinde
,
D. E.
,
Fayomi
,
O. S. I.
,
Sadiku
,
E. R.
,
Popoola
,
P.
,
Oropeng
,
L.
,
Yahaya
,
A.
, and
Mamudu
,
O. A.
,
2020
, “
A Review on the Impact of Mining Operation: Monitoring, Assessment and Management
,”
Results Eng.
,
8
, p.
100181
.
18.
Haworth
,
R.
,
1949
, “
The Abrasion Resistance of Metals
,”
Trans. ASM
,
41
, pp.
819
854
.
19.
ASTM G65-00
,
2000
, “
Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus
,” Vol.
03.02
.
20.
Swanson
,
P. A.
,
1985
, “Comparison of Laboratory and Field Abrasion Tests,”
Proceedings of the International Conference on Wear of Materials
,
K. C.
Ludema
, ed.,
ASME
,
NewYork
, pp.
519
525
.
21.
Radziszewski
,
P.
,
2002
, “
Exploring Total Media Wear
,”
Miner. Eng.
,
15
(
12
), pp.
1073
1087
.
22.
Hosseini
,
P.
, and
Radziszewski
,
P.
,
2011
, “
Combined Study of Wear and Abrasive Breakage Using Steel Wheel Abrasion Test
,”
Wear
,
2011
(
5–6
), pp.
689
696
.
23.
Lowell
,
S.
,
2004
,
Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density
,
Springer
,
New York
.
24.
Radziszewski
,
P.
,
Varadi
,
R.
,
Chenje
,
T.
,
Santella
,
L.
, and
Sciannamblo
,
A.
,
2005
, “
Tumbling Mill Steel Media Abrasion Wear Test Development
,”
Miner. Eng.
,
18
(
3
), pp.
333
341
.
25.
Chenje
,
T.
,
Lafleur
,
J. P.
, and
Hosseini
,
P.
,
2010
,
Abrasion Tester (SWAT) Operational Procedure March Comminution Dynamics Lab
,
McGill University
,
Québec, Montréal
.
26.
Schellinger
,
A.
,
1952
, “
A Calorimetric Method for Studying Grinding in a Tumbling Medium. Transactions
,”
10
, pp.
518
522
.
27.
Brace
,
W. F.
, and
Walsh
,
J. B.
,
1962
, “
Some Direct Measurements of the Surface Energy of Quartz and Orthoclase
,”
Am. Mineral. J. Earth Planet. Mater.
,
47
(
9–10
), pp.
1111
1122
.
28.
Schoenert
,
K.
,
1986
, “
On the limitation of energy saving in milling
,”
World Congress Particle Technology, Part II, Comminution, Nurnberg, April
, pp.
16
19
.
29.
Schoenert
,
K.
,
1972
, “
Role of Fracture Physics in Understanding Comminution phenomena. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers
, pp.
21
27
.
30.
Carey
,
W. F.
, and
Stairmand
,
C. J.
,
1953
, “
A method of assessing the grinding efficiency of industrial equipment.
Recent Developments in Mineral Dressing
, pp.
117
136
.
31.
Tromans
,
D.
, and
Meech
,
J. A.
,
2004
, “
Fracture Toughness and Surface Energies of Covalent Minerals: Theoretical Estimates
,”
Miner. Eng.
,
17
(
1
), pp.
1
15
.
32.
Musa
,
F.
, and
Morrison
,
R.
,
2009
, “
A More Sustainable Approach to Assessing Comminution Efficiency
,”
Miner. Eng.
,
22
(
7–8
), pp.
593
601
.
33.
Zum Gahr
,
K. H.
,
1981
, “
Formation of Wear Debris by the Abrasion of Ductile Metals
,”
Wear
,
74
(
2
), pp.
353
373
.
34.
Handbook
,
A.
,
2017
,
Friction, Lubrication and Wear Technology, American Society for Metals
, Vol.
18
.
35.
Zum Gahr
,
K.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
36.
Sevim
,
I.
, and
Eryurek
,
I. B.
,
2006
, “
Effect of Fracture Toughness on Abrasive Wear Resistance of Steels
,”
Mater. Des.
,
27
(
10
), pp.
911
919
.
37.
Atkins
,
T.
,
2009
,
Metals and Non-Metals
,
Butterworth-Heinemann
,
Amsterdam
.
38.
Zeng
,
Y.
, and
Forssberg
,
E.
,
1993
, “
Monitoring Grinding Parameters by Signal Measurements for an Industrial Ball Mill
,”
Int. J. Miner. Process.
,
40
(
1–2
), pp.
1
16
.
39.
Watson
,
J.
,
1985
, “
An Analysis of Mill Grinding Noise
,”
Powder Technol.
,
41
(
1
), pp.
83
89
.
40.
Spencer
,
S. J.
,
Campbell
,
J. J.
,
Weller
,
K. R.
, and
Liu
,
Y.
,
1999
, “
Acoustic Emissions Monitoring of SAG Mill Performance
,”
Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No. 99EX296)
, Vol. 2,
IEEE
, pp.
939
946
.
41.
Aldrich
,
C.
, and
Theron
,
D. A.
,
2000
, “
Acoustic Estimation of the Particle Size Distributions of Sulphide Ores in a Laboratory Ball Mill
,”
J. South. Afr. Inst. Min. Metall.
,
100
(
4
), pp.
243
248
.
42.
Kolacz
,
J.
,
1997
, “
Measurement System of the Mill Charge in Grinding Ball Mill Circuits
,”
Miner. Eng.
,
10
(
12
), pp.
1329
1338
.
43.
Das
,
S. P.
,
Das
,
D. P.
,
Behera
,
S. K.
, and
Mishra
,
B. K.
,
2011
, “
Interpretation of Mill Vibration Signal via Wireless Sensing
,”
Miner. Eng.
,
24
(
3–4
), pp.
245
251
.
44.
Tang
,
J.
,
Yan
,
G.
,
Liu
,
Z.
,
Liu
,
Y.
,
Yu
,
G.
, and
Sheng
,
N.
,
2020
, “
Experimental Analysis of wet Mill Load Parameter Based on Multiple Channel Mechanical Signals Under Multiple Grinding Conditions
,”
Miner. Eng.
,
159
(
1
), pp.
106609
.
45.
Delaney
,
G. W.
,
Cleary
,
P. W.
,
Morrison
,
R. D.
,
Cummins
,
S.
, and
Loveday
,
B.
,
2013
, “
Predicting Breakage and the Evolution of Rock Size and Shape Distributions in Ag and SAG Mills Using DEM
,”
Miner. Eng.
,
50–51
, p.
132
139
.
46.
Cleary
,
P. W.
,
Delaney
,
G. W.
,
Sinnott
,
M. D.
,
Cummins
,
S. J.
, and
Morrison
,
R. D.
,
2020
, “
Advanced Comminution Modelling: Part 1–Crushers
,”
Appl. Math. Model.
,
88
, pp.
238
265
.
You do not currently have access to this content.